0 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Солнечная панель своими руками

Содержание

Сделай сам. Солнечная батарея своими руками

6 сентября 2010 в 12:00
Сергей Коростель, Александр Лукьянчик, ET CETERA

В то время как в Беларуси все больше и больше говорится об энергосбережении, субсидируемые тарифы на электроэнергию для населения далеки еще от уровня, при котором широкое использование альтернативной энергетики станет рентабельным. Солнечные модули и ветроустановки пока еще слишком дороги, чтобы получать с их помощью энергию для индивидуального потребления. Тем не менее альтернативная энергетика постепенно развивается и занимает свою нишу, позволяя экономить деньги.

В качестве примера можно привести недавно появившиеся на трассе Брест – Москва знаки, предупреждающие о пешеходном переходе. Они оборудованы светодиодной подсветкой, видной издалека. Над знаком установлен солнечный модуль, заряжающий в дневное время аккумулятор, который, в свою очередь, отдает энергию ночью.

Альтернативная энергетика выгодна там, где невозможно или очень дорого провести обыкновенную электролинию. В вышеописанном случае тянуть электричество к знаку перехода пришлось бы на многие километры, потратив при этом десятки миллионов рублей, в то время как солнечный модуль обошелся в несколько сотен долларов. Таких примеров можно привести множество: в южных странах уже появляются базовые станции сотовой связи на солнечных батареях, рекламные щиты с подсветкой и даже светодиодные фонари дорожного освещения.

Своими руками

У автора давно назрела необходимость в автономном источнике питания. Летом, выезжая на природу на пикник, хорошо иметь с собой прохладные напитки и свежие продукты. Для этих целей в свое время был куплен автохолодильник, который подключается к прикуривателю автомобиля. В дороге, когда вокруг жара, в холодильнике всегда прохладно, и продукты доезжают к пикнику свежими и охлажденными. Но дальше возникали проблемы: включенным в машине холодильник надолго не оставишь – потребляя энергию, как автомобильная фара, он быстро посадит аккумулятор. В общем, к середине жаркого дня от холода не оставалось и следа.

Солнечная батарея как нельзя лучше должна подойти для вышеописанного случая. Ведь выезды на пикники происходят обычно в солнечную погоду, и отдача от солнечной батареи должна быть максимальной. Вот так возникла идея с помощью солнца получать холод.

Готовые солнечные модули, к сожалению, все еще очень дороги. Судя по паспорту, автохолодильник потребляет 48 ватт, и нужный по мощности модуль будет стоить никак не меньше 300 долларов. Это в России. В Беларуси такая диковинка будет стоить еще больше. Дороговато для пикника.

Выход был найден на блоге одного американского умельца, который для своей экспериментальной установки самостоятельно собрал солнечную батарею из некондиционных модулей. Такие в бесчисленном множестве продаются на известном аукционе eBay с пометкой «DIY» (что расшифровывается как Do It Yourself, «сделай сам»). Для поиска предложений достаточно ввести словосочетание «solar cells». Обычно продаются плохо порезанные некондиционные модули с неровными кромками (sharpen edges). Качество модуля от этого сильно не страдает, и их вполне можно использовать для построения своей батареи.

Для сборки стандартной батареи мощностью 50 ватт обычно используют 36 модулей размером 3×6 дюймов с КПД 11%. Каждый модуль вырабатывает 0,5 вольт, ток – около 3 ампер. Соединяя модули последовательно, можно получить батарею мощностью около 50 ватт (напряжение при этом будет 18 вольт, а ток – до 3 ампер). Почему 18 вольт? Потому что это наилучшее напряжение для зарядки стандартных 12-вольтовых аккумуляторов. Ведь солнечная батарея обычно работает в связке с аккумулятором, который накапливает вырабатываемую энергию, позволяя расходовать ее, когда это нужно потребителю.

В нашем же случае мы можем обойтись и без аккумулятора, так как потреблять энергию мы будем днем, в солнечную погоду, непосредственно от солнечной батареи. Преобразователь на 12 вольт нам тоже не нужен, потому как автохолодильник не критичен к уровню напряжения и его стабильности. Более того, автохолодильник создаст такую нагрузку, что напряжение «просядет» до нормативных 12 вольт. Или даже ниже. Как показывают дальнейшие опыты, такие предположения оправданны.

Итак, необходимые 36 модулей были куплены на eBay с помощью банковской карты за 48,9 доллара (без торга, по «Buy It Now»). Доставка из США обошлась в 17,64 доллара. Хочу заметить, что за посылки стоимостью более 120 евро (включая стоимость доставки) придется платить таможенную пошлину. Поэтому не стоит заказывать много элементов сразу. При доставке выбирайте USPS – это почтовая служба США. Доставка экспресс-службами DHL, UPS и прочими будет стоить дороже, к тому же придется платить пошлину.

Посылка пришла на удивление быстро. Меньше чем за две недели. Модули, несмотря на их хрупкость, оказались целыми – видимо, благодаря хорошей упаковке. Более того, продавец положил два запасных, на всякий… Забегая вперед, скажу, что они оказались не лишними. Модули действительно очень хрупкие. Достаточно неаккуратно нажать пальцем, и модуль разлетается на мелкие осколки, как кусочек слюды. В итоге два модуля по неосторожности расколол при монтаже.

Сначала на ровном столе спаял 4 цепочки по 9 модулей. Затем начал их монтировать. На заводах солнечные модули монтируют твердую поверхность, закрывая сверху специальным каленым стеклом. В дождь с градом панель использовать не собираюсь, поэтому из подручных материалов подойдет и оргстекло. В качестве подложки использовал обыкновенную фанеру. Вырезав куски 66 на 77 см, с помощью строительного скотча прикрепил все 4 цепочки модулей к оргстеклу. Далее спаял все 4 цепочки между собой, прикрепил колодку с винтиками, выведя туда провода.

По краям оргстекла был проложен вспененный двухсторонний двухмиллиметровый скотч. То же самое было сделано и в промежутках между цепочками. Сверху накрыл все фанерой. Получился такой «пирог»: фанера, воздух, модули, оргстекло. Толстый скотч не дает соприкасаться фанере и оргстеклу, сохраняя пространство для хрупких модулей. Ведь их очень легко раздавить.

Вот что получилось:

В следующие же выходные выехали на Вилейку на тестирование. День был не самый удачный. По России гудели пожары, а у нас была легкая дымка, изредка скрывающая солнце пеленой так, что на него можно было смотреть. Тем не менее батарея показала неплохие результаты.

Для тестирования в качестве нагрузки был использован холодильник, потребляющий автомобильные 12 вольт, 4 ампера. Замерялось напряжение, выдаваемое батареей при подключенном холодильнике, и его потребляемый ток:

Как видно, мощность батареи не достигла заявленных идеальных 50 ватт. Этого и стоило ожидать. Все-таки у нас не Сахара, солнце не такое сильное. Также стоит учесть некондиционность модулей и покрытие из примитивного оргстекла.

Однако даже когда скрывалось солнце и тень сливалась с окружающим фоном, холодильник продолжал работать, выдавая холод. Все продукты оставались холодными целый день. Цель достигнута!

Если у вас частный дом

…то об альтернативных источниках энергии можно задуматься уже сейчас.

Первое, с чего нужно начать, – это меры по энергосбережению. Экономичные лампочки, утепление стен, хорошие стеклопакеты, вентиляция с рекуперацией тепла. Неразумно обвешивать дом дорогими солнечными батареями, для того чтобы «раскочегарить» старую «лампочку Ильича» с КПД 5%.

Солнце — неисчерпаемый источник энергии. Именно она летом «обогревает» нашу половину земного шарика, принося гигантское количество энергии. Считается, что в солнечный день на один квадратный метр поверхности попадает более 1000 ватт солнечной энергии. Если всю ее суметь преобразовать, то за пару минут можно вскипятить литр воды (сравните, мощность одного чайника обычно составляет 2000 ватт).

На практике КПД распространенных солнечных элементов составляет около 20%. То есть с 1 квадратного метра батареи вы получите около 200 ватт электрической энергии. Возьмите среднюю стоимость батареи такой площади, умножьте на количество нужных вам ватт. Добавьте сюда хитрую электронику (стоимостью в тысячи долларов), которая позволяет накапливать энергию либо отдавать излишки во внешнюю сеть… Сделайте поправку на количество ясных дней в Беларуси (их около 30-40 в год). И поймете, что сэкономить на электричестве, используя солнечные батареи, вам не удастся. Разве что питать «халявной» энергией некритичные источники: светодиодные светильники на лужайке в саду.

Для отопления дома и подогрева горячей воды есть другие, более эффективные способы. Солнечные коллекторы. Их все больше и больше устанавливают в Европе. КПД вакуумных солнечных коллекторов (а именно такие лучше всего использовать в наших условиях) достигает 80%. По свидетельству пользователей, в минских условиях, в летнее время и в межсезонье, в частных домах удается забыть о подогреве горячей воды с помощью традиционных видов топлива. Принцип работы вакуумного коллектора заключается в том, что солнце через прозрачную колбу с разреженным воздухом нагревает трубку с жидкостью-теплоносителем. Поскольку трубка с горячей жидкостью отделена от окружающей среды, потерь тепла не происходит. Такие коллекторы могут работать даже в солнечный зимний день.

Солнечные перспективы

Для того чтобы оценить перспективы развития солнечной энергетики в Беларуси, необходимо ответить на следующие вопросы:

1. Какую нишу может занять солнечная энергетика?
2. Каковы перспективы развития солнечных технологий?

Как было показано выше, уже сейчас имеет смысл использовать солнечные батареи в местах, удаленных от линий электропередач и не критичных к постоянному наличию электроэнергии. Со временем солнце может занять свою нишу и в большой энергетике. На данный момент основными генерирующими мощностями в Беларуси являются ТЭЦ и ГРЭС. И если КПД ТЭЦ, благодаря когенерации тепловой энергии, достигает 80-90%, то КПД ГРЭС не превышает 40%. ТЭЦ являются основными источниками энергии в отопительный период, ГРЭС – летом. Также стоит отметить, что потребление энергии днем в 2 раза превышает потребление ночью. Получается, что дороже всего электроэнергия обходится нам летним днем, то есть в период максимальной выработки энергии солнечными батареями. Вопрос, как всегда, в цене.

В последнее время солнечные технологии переживают бурное развитие. Достаточно сказать, что максимально достижимый КПД солнечных элементов за последние 10 лет увеличился с 32 до 42%. Объемы производства растут на 60-100% каждый год. Даже в кризисный 2009 год, когда цена нефти упала до 30$ за баррель, рынок солнечных элементов вырос на 25%. Также постоянно снижается и их себестоимость. Появляются новые дешевые способы производства солнечных батарей. При средней стоимости солнечных модулей 4$ за ватт установленной мощности в США уже продаются тонкопленочные модули с ценой 1$/Вт. Причем уже достигнута себестоимость производства 0,3$/Вт. Средняя себестоимость киловатт-часа солнечной энергии в США сегодня составляет 19 центов и снизилась более чем на 10% за последние два года. Для сравнения: на сегодняшний день субсидируемый тариф на электричество для населения в Беларуси равен 125 рублям, или 4 центам.

Вместе с тем тариф для нужд отопления и горячего водоснабжения с присоединенной мощностью оборудования более 5 кВт равен 865 рублям, или 29 центам. В условиях Беларуси при себестоимости 0,3$/Вт стоимость солнечного аналога проектируемой АЭС составит $4-7 млрд при сравнимом сроке эксплуатации и практически нулевых эксплуатационных затратах. На практике заменить АЭС на СЭС, конечно же, не получится ввиду непостоянства выработки энергии на СЭС.

Читать еще:  Как выковать маленький, но злой топорик своими руками

Таким образом, достигнутый уровень развития солнечных технологий и его динамика позволяют сделать вывод о том, что солнечная энергетика рано или поздно появится и в Беларуси. На данном этапе в Беларуси целесообразно принять закон об альтернативной энергетике, который бы стимулировал развитие этого направления. Также необходим пересмотр технических стандартов электросетей и оборудования с тем, чтобы предоставить возможность отдачи выработанной локально, с помощью солнечных батарей, энергии в общую сеть.

Другие источники

Первое, что приходит на ум после солнечных установок, – это использование ветра. К сожалению, ветряки – очень дорогое удовольствие. И установишь их не на каждом подворье. Более перспективной для обогрева дома зимой представляется… геотермальная энергия. Да-да, в Беларуси, где нет вулканов и подземных озер с кипятком.

Появился целый класс установок, называемых тепловыми насосами. Тепловой насос позволяет «выкачивать» из земли тепловую энергию и пустить ее на обогрев дома. Внешний контур насоса закладывается в землю, на уровень, где почва всегда остается положительной температуры. Внутренний контур обогревает дом. Для описания принципа работы теплового насоса часто приводят аналогии «холодильника наоборот». Выкачивая малые доли тепла из-под земли, насос нагревает внутренний контур отопления до температуры около 30 градусов Цельсия.

Стоимость тепловых насосов для частных домов на текущий момент упала ниже десяти тысяч евро, что в свете повышения цен на топливо представляется рентабельным. Многие продавцы заявляют о 200-300% КПД таких установок. Потребляя из сети около 3 киловатт энергии, установка дает тепла в 2-3 раза больше. К сожалению, в Беларуси есть проблемы с установкой таких устройств. Энергетики считают, что дом отапливается электричеством, и повышают цены на потребляемую электроэнергию в разы. Кроме того, высокие таможенные пошлины на ввоз таких установок не имеют ничего общего с попытками Беларуси стать энергонезависимым государством.

Солнечная панель своими руками

Зачем платить кучу денег (или вообще какие-то деньги) за программу, которая показывает, как сделать солнечную батарею, если можно получить то же самое бесплатно?

Я расскажу, как сделать солнечную панель, стоимость которой будет вдвое меньше покупного аналога. Подобные системы сделаны из материалов, продающихся в местных строительных магазинах и магазинах электроники. Также можно купить материалы онлайн. Время собирать солнечный свет и делать электричество бесплатным!

Шаг 1: С чего все началось

Я наблюдал, как растут мои счета за электроэнергию год за годом, просто потому, что современная бытовая техника постоянно стоит включенной в режиме ожидания. И в этом заключается не только вред окружающей среде, но и вред моему счету в банке, потому что я фактически плачу за “ничего”. Я не мог постоянно выключать устройства из сети, так как это усложняло их использование и отнимало лишнее время на постоянные настройки. Постепенно я начал искать возобновляемые источники энергии, чтобы компенсировать мои ненужные траты. Ветровая энергия была не вариант, я живу в очень тихом районе без ветров. Гидроэлектроэнергия тоже не подходит, так как я живу на равнине практически без рек. Поэтому солнечная энергия показалась мне наиболее удачным выбором.

Стоимость готовых солнечных систем просто громадная, такая установка не окупит себя и за 20 лет непрерывной работы. Я попытался завоевать один из правительственных грантов на такую систему, но их очень мало, и я не получил свой. Но это не заставило меня отказаться от цели, хоть я и не хотел платить так много денег за систему. Логичным решением было сделать ее самостоятельно. Да, вы все верно поняли, я захотел сделать свою собственную солнечную систему. Теперь я могу точно сказать, что это вполне возможно, все материалы доступны в местных магазинах или по интернету. Я не технический гений и не имею много опыта в работе с электричеством, я просто изучил конструкцию солнечных панелей, из чего они делаются, как можно собрать солнечную систему своими руками. В результате получился этот мастер-класс.

Для одной панели вам понадобится:

— 28 солнечных элемента с пиковой мощностью 3.1 Вт
— 2 листа стекла
— блокирующий диод на 6А
— 24 м ленточного провода шириной 2 мм
— 2 м ленточного провода 5 мм шириной
— флюс
— распределительная коробка
— клеммная колодка
— припой
— 1 м термоусадочной трубки
— 100% силиконовый герметик
— крестики для кафеля
— 2 алюминиевых уголка

Кроме того, понадобятся монтажные материалы. Общая стоимость одной панели составила 211.36 евро. Я привел список нужных материалов для ондй панели, а в конструкции предусмотрено две, один инвертор и прибор для измерения выработки. В сумме затраты на материалы составляют 441.72 евро или 20778 рублей.

Вскоре после планирования нужных материалов я нашел солнечные батареи онлайн. Собрав информацию с разных источников, я сделал монтажную схему проводки и закупил обычное стекло в местном магазине. Инструменты также были куплены на месте.

Монтажные материалы, такие как провода, монтажная коробка, шурупы, крепежные кронштейны, я не покупал, потому что все это уже пылилось в сарае.

Шаг 3: Производственный процесс

Я припаял солнечные элементы согласно монтажной электросхеме группами. Это суммировало напряжение всех ячеек для достижения желаемого выхода (максимально возможного). Я сделал панель из 28 ячеек (4 ряда по 7 элементов). В таком расположении и размере панель отлично помещалась в место в моем саду. В итоге я получал 28х0.5В=14В (в теории). Силу тока я до сих пор не знал, потому что купил недорогие элементы класса В для этого эксперимента (просто сэкономил).

Когда я закончил паять ячейки, все они были верх ногами (так как я спаивал из с задней стороны). Я капнул силикона на каждую панель и приклеил их к 4-миллиметровому листу стекла (этот лист будет задней стороной панели).

Я оставил это все сохнуть, чтобы силикон достаточно испарился (это действительно важно, чтобы ушли все лишние пары, поскольку они вступают в реакцию с припоем на батареях).

Затем я перевернул стеклянный лист и вставил небольшие крестики для кафеля между секциями (обычно их используют при кладке кафеля на стенах, чтобы соблюсти одинаковый зазор со всех сторон). Я сделал это для того, чтобы вместе со вторым листом стекла вся конструкция была более плотной и прочной. После расстановки крестиков я нанес слой силикона по краям стеклянного листа на расстоянии около 3 см от края (этот край нужен нам для заделки в следующих шагах).

Затем я разместил другой лист стекла поверх элементов, так что солнечные элементы теперь заключены между двумя листами стекла толщиной 4 мм (можно сказать, я застеклил элементы, это и был мой простой план).

Шаг 4: Выпаривание

Я оставил всю эту конструкцию сохнуть минимум сутки. Чем дольше, тем лучше. Между двумя листами стекла осталось пустое место по краям. Я залил это пространство герметиком. Я запечатал элементы двумя слоями силикона, и если один из них разгерметизируется, то второй надежно будет защищать батареи внутри. После нанесения второго слоя я оставил конструкцию сохнуть еще на 3 дня. Когда силикон полностью высох, я сделал рамку из алюминиевого профиля, чтобы защитить стеклянный корпус панели.

Шаг 5: Монтажная коробка

На задней стороне панели я сделал монтажную коробку с клеммной колодкой. На одной стороне блока идет +, а с другой стороны будет идти провод к инвертеру. Также в монтажной коробке есть диод между + с панели к +, идущему к инвертеру, это предотвращает поток электричества к панели, когда панель не производит никакого электричества (например, в темное время суток).

Я связался с продавцом солнечных панелей, чтобы заказать подходящий инвертер. Мне нужен маленький инвертер (я же собираюсь производить небольшое количество электричества своей системой). Я взял инвертер OK-4, рассчитанный на 24 — 50 В, максимально 100 Вт. Это был самый маленький инвертер. Получается, что одной панели будет мало, потому что она выдает максимально 14В. Мне нужна была вторая панель, и в сумме у меня получится 28В, чего будет достаточно для инвертера. Учитывая, что это не сильный ток, то и двух панелей могло быть мало. И я сделал третью панель, чем достиг стабильно высокую производительность.

Я знаю, что этот инвертер максимально рассчитана на 100 Вт, а мои три панели будут давать больше (135 Вт), но этот максимум от панелей будет гаситься инвертером. Все, что идет сверх допустимой мощности, будет выделяться в виде тепла. Да, я знаю, что вы думаете: я трачу электричество впустую. Это правда, но такой перебор будет только в самые яркие часы, всего несколько часов в день. Большую часть дня панели не получают света столько, чтобы вырабатывать сверх 100 Вт. Зато при такой конструкции я постоянно добываю электроэнергию в достаточном количестве — с самого восхода солнца и до заката, просто потому, что инвертер способен работать на низком напряжении. Я получаю гораздо больше электроэнергии, питая панели весь день, чем теряю на скашивании максимальной мощности в часы зенита.

Шаг 7: Цифры и факты

В моем инвертере OK-4 не было встроенного дисплея для показа выработки, поэтому мне нужен был отдельный измеритель.

Ну и мне опять же не хотелось выкладывать кучу денег за этот прибор. В местном магазине я купил вот такую модель — ELRO M12 Power Calculator, который предназначен для расчета потребления электроэнергии бытовыми приборами, но работает неплохо и для подсчета выработки солнечной электроэнергии (этот калькулятор работает обоими способами, может как брать, так и отдавать электричество в сеть).

И этот калькулятор включается напрямую в розетку без суперсложных проводок (как раз то, что нужно).

Каждый солнечный элемент выдает 0.5В х 6А = 3Вт, но это максимальная мощность, при идеальных условиях. Для всей панели такая максимальная мощность составляет 28 ячеек х 3Вт = 84Вт.

Но по опыту знаю, что это очень оптимистические цифры, которые на деле обычно на 20% меньше. Так что в реальной жизни я ожидаю производительность примерно в 67Вт.

Моя панель точно не расположена идеально к солнцу, но сейчас это не так и важно. Панели расположены под углом 10 градусов (вместо 35) и не точно на юг.

Но это временная установка, я просто хочу посмотреть, как они себя ведут в реальных условиях при холодной температуре воздуха, куче дождей и затуманенного солнца.

В ближайшем будущем я поправлю установку.

Учитывая все факторы, панели вырабатывают по 15В х 3А = 45Вт каждая при условии, что напряжение ячеек используется по максимуму.
Сила тока может увеличиться путем изменения угла наклона панелей больше к солнцу, но сейчас это невозможно в том месте, где я их расставил.

Шаг 8: Рабочие показатели

В среднем панели вырабатывают по 500 Вт в неделю, учитывая, что все работает в обычных условиях. Сейчас критики скажут, что это вообще ничто, но учитывая, что панели могут давать больше, если я поменяю угол/расположение, и то, что мои панели меньше стандартных плюс это всего 3 панели, то цифры не кажутся такими уж маленькими. Моей целью было компенсировать трату энергии на бытовую технику, работающую в режиме ожидания. И в этом я преуспел. Не учитывая надежность конструкции (на проверку требуется больше времени), я могу сказать, что самодельная солнечная система работает также хорошо, как и те, что можно купить в магазине.

Читать еще:  Как сделать простого «робота» попрыгунчика своими руками

Шаг 9: Мысли на будущее

В будущем я планирую проверить панели на прочность, так как я пока не знаю, как они поведут себя в длительном периоде, учитывая разнообразие погодных условий, в которых им придется функционировать.

После этого я хочу сделать систему следования за солнцем и более крупные по размеру панели.

Так мне удастся получить больше электроэнергии, так как это будут более мощные панели, которые всегда будут оптимально направлены к солнцу.
И конечно же, все полученные знания я разделю с читателями, чтобы каждый смог повторить это у себя дома.

Специально для критиков: да, вы правы, это не бесплатная электроэнергия, так как я оплачиваю материалы. Но со временем мои панели окупаются, и начинают работать на меня, принося урожаи с солнца.

Зачем ждать завтра, если уже сегодня можно начать экономить?

Как сделать солнечную батарею своими руками: инструктаж по самостоятельной сборке

Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?

Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.

В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.

Коротко об устройстве и работе

Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.

Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.

При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.

В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.

В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.

На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.

Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте далее.

Материалы для создания солнечной пластины

Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:

  • силикатные пластины-фотоэлементы;
  • листы ДСП, алюминиевые уголки и рейки;
  • жёсткий поролон толщиной 1,5-2,5 см;
  • прозрачный элемент, выполняющий роль основания для кремниевых пластин;
  • шурупы, саморезы;
  • силиконовой герметик для наружных работ;
  • электрические провода, диоды, клеммы.

Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.

Теперь рассмотрим самые важные материалы более подробно.

Кремниевые пластины или фотоэлементы

Фотоэлементы для батарей бывают трёх видов:

  • поликристаллические;
  • монокристаллические;
  • аморфные.

Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.

Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.

Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.

Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.

Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.

Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.

Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.

Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.

Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.

Каркас и прозрачный элемент

Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.

Второй вариант более предпочтителен по целому ряду причин:

  • Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
  • При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
  • Не впитывает влагу из окружающей среды, не гниёт.

При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.

От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.

Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.

От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.

Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.

Проект системы и выбор места

Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.

Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.

Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.

Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.

Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.

Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.

Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества солнечных батарей.

Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.

Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.

Монтаж солнечной батареи по шагам

Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.

При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.

Шаг #1 – пайка контактов кремниевых пластин

Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.

Пайка осуществляется следующим образом:

  1. Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
  2. Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
  3. Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
  4. На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
  5. Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.

В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.

Шаг #2 – изготовление каркаса для солнечной батареи

Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.

На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.

После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.

Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.

На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).

Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.

Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.

Шаг #3 – монтаж кремниевых пластин-фотоэлементов

Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.

Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.

  1. Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
  2. Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
  3. Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
  4. Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
  5. Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
  6. Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
  7. В дне каркаса сверлим отверстия для вывода проводов наружу.
Читать еще:  Прозрачная бензиновая зажигалка своими руками

Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.

Сборка солнечной батареи своими руками в домашних условиях

Преобразование света в электричество – идея не новая, давно практикуется. Сегодня можно сравнительно легко спроектировать, собрать батарею светочувствительных элементов. Инструменты, компоненты не составит труда приобрести в магазине, через интернет.

Какие лучше выбрать?

Солнечные батареи своими руками в домашних условиях могут быть собраны буквально за пару часов. Существует несколько разновидностей преобразователей света в электрическую энергию. Они различаются своим КПД, размерами, другими характеристиками. Основные категории:

Основное преимущество монокристаллической разновидности – сравнительно высокий коэффициент полезного действия. Его величина – 14-27%. Притом монокристаллический тип служит почти четверть века – 25-30 лет. Изготавливаются из кристаллов, выращенных искусственным способом. Единственным минусом является падение КПД с течением времени.

Хорошей альтернативой являются поликристаллические модули. Они имеют гораздо меньший срок эксплуатации (не более 10 лет). КПД также сравнительно невелик – 13%. Однако производительность остается практически неизменной на протяжении срока использования. Цена компонентов, работа которых основывается на кристаллах, сравнительно велика.

Более дешевой альтернативой являются аморфные. Представляют собой гибкую пленку (она является своеобразной основой). Поверх нанесен кремний – используется в качестве преобразователя. Сама технология появилась сравнительно давно, её возраст насчитывает не один десяток лет. Однако аморфный кремний появился в свободной продаже сравнительно недавно.

Солнечная батарея своими руками должна изготавливаться из модулей удовлетворяющих требованиям проекта. Выбирать необходимо учитывая следующие факторы:

· регион проживания – различается продолжительность дня;

· условия эксплуатации (влажность, температура, иное);

· количество необходимого электричества;

Желательно перед началом закупок определиться с целями и задачами. Это позволит выбрать оптимальный вариант, избежать стандартных ошибок. Например, нет необходимости покупать инвертор – если источник энергии используется для обеспечения напряжением устройств, работающих на постоянном токе.

Какие инструменты и материалы необходимы?

Преобразователь – основа проекта. Но для сборки, нормальной работы требуется сравнительно широкий перечень материалов:

· припой – оптимальным решением станет мягкий, низкотемпературный оловянный;

· провода одножильные или многожильные, медные (изолированные, оголенные) – тип выбирается с учетом используемых пластин;

· рама – представляет собой конструкцию из пластика, металла либо дерева;

· стекло, прозрачный полимер – позволяет предотвратить возможные механические, иные повреждения;

· герметик – хорошим решением станет эпоксидный компаунд (можно заменить обычным силиконом);

· аккумулятор – выступает в роли накопителя для поддержания заданного уровня напряжения в темное время суток;

· инвертор – преобразует постоянное напряжение в переменное (если требуется).

Помимо материалов для сборки потребуется ручной инструмент:

1. набор отверток (шлицевых, крестовых);

2. дрель с набором сверл разного диаметра;

4. мультиметр (позволяющий замерять постоянный/переменный ток, напряжение);

5. паяльник подходящей мощности.

Понадобится несколько десятков саморезов. Выбирать их длину, диаметр следует исходя из выбранного материала. Если будет использоваться дерево – желательно предварительно обработать его антисептическими составами, покрыть лаком. Присутствие большого количества влаги обычно негативно сказывается на состоянии древесины, вызывает гниение.

Пластик более практичен. Устойчив к перепадам температур, не поддается коррозии. Некоторые умельцы используют для сборки рам полипропиленовые трубы малого диаметра. Приобрести такие очень просто, спайка занимает буквально пару часов. Но требуется специальный паяльник, набор насадок, фитинги.

Подготовка проекта и выбор места установки

Чтобы самодельная солнечная батарея отрабатывала на все 100%, следует правильно выбрать место монтажа. Учитывается множество различных факторов. Основные наиболее серьезные:

· количество падающих солнечных лучей;

· наличие либо отсутствие тени деревьев, строений расположенных рядом.

Например, в течение дня хорошо освещенное, солнечное место может превратиться в затемненный участок – солнце перемещается, заходит за различные постройки. Можно выбрать место расположение просто на земле. Оптимальным решением станет установка на крыше. Желательно заранее убедиться, что конструкция выдержит вес.

Нужно отметить: максимальный КПД отдельных разновидностей достигается за счет правильного расположения относительно солнца. Свет должен падать под определенным углом. Не лишним будет сконструировать поворотную раму, регулируемую по высоте. Например, монокристаллические/поликристаллические ячейки позволяют получить максимум электричества лишь при угле падения солнечных лучей 900.

Регулировки позволяют получить максимальный заряд. Солнце изменяет свое положение не только с течением суток. Многое зависит от времени года. Например, летом солнце стоит в зените. Зимой – опускается ниже, находится рядом с горизонтом. Потому если планируется эксплуатация в зимний период времени – желательно сделать конструкцию поворотной.

Интенсивность светового потока играет важную роль. Например, если летним днем «отдает» 6-7 кВт/ч, то вечером КПД уменьшится – на 50%. Следовательно, стационарное положение позволит добиться только минимальной производительности. Оптимальное решение – расположить конструкцию под углом 50-600. Пределы величины углов регулируемых конструкций:

Отсчет указанных выше углов начинается от горизонтальной плоскости. Важный момент – суммарная площадь используемых пластин. Зависимость сравнительно проста: чем она больше – тем более мощные потребители возможно подключить. Расчеты следует осуществлять с учетом КПД. Обычно 1 м2 пластин выдает 120 Вт электрической энергии. Получить 2.5 кВт возможно путем установки примерно 20 м2 панелей.

Солнечная панель своими руками не может обеспечить стабильное напряжение. На производительности сказывается время года, другие факторы. Потому необходимо приобрести дополнительно накопители – аккумуляторные. Оптимальным выбором станут литиево-полимерные элементы питания. Они быстро заряжаются, возможно самостоятельно подключить контролер питания, выбрать номиналы.

Процедура сборки: основные этапы

Разобраться, как сделать солнечную батарею своими руками, не составит большого труда. Достаточно лишь приобрести основные детали, инструменты. Выделяют 3 основных этапа:

· сборка – объединение нескольких отдельных пластин;

· изготовление рамы, защитного экрана (применяется стекло, прочный пластик);

· сборка отдельных компонентов.

Спайка отдельных пластин

После приобретения подходящих панелей можно начинать собирать конструкцию. Самодельная солнечная батарея своими руками сравнительно проста в изготовлении. Самый важный шаг – спайка модулей. Пластины любого типа (кристаллические, собранные на основе кремния) соединяются обычными проводниками (одножильные или многожильные). Необходимо использовать заранее подготовленный паяльник, низкотемпературный припой.

Причем желательно использовать олово. Низкая температура пайки позволит избежать повреждения пластин. Даже если работа выполняется аккуратно велика вероятность повредить компоненты. Оптимальное решение – использовать припой марки ПОС-61. Температура плавления составляет 1800С. Порядок пайки включает основные этапы:

· заранее нарезается достаточное количество проводников – которые будут объединять отдельные элементы (длина жилы должна быть в 2 раза больше длины элемента);

· далее модуль аккуратно раскладывается – желательно использовать ровную поверхность (столешница, большой лист фанеры);

· каждый контакт зачищается кусачками (если присутствует изоляция), лудится оловом;

· пропаиваются все контакты, пластины раскладываются в определенном порядке (работать необходимо аккуратно, элементы очень хрупкие);

Рассмотренным выше способом соединяются между собой отдельные элементы. Иногда приобретаемые компоненты снабжаются проводниками. Подобные решения существенно упрощают сборку, уменьшают количество требуемого времени. Желательно не использовать паяльник мощностью более 45 Вт. Оптимальный выбор – паяльная станция снабженная регулятором температурного режима. Использование такого паяльника позволит избежать порчи пластин, их повреждения.

Время, необходимое на осуществления данного этапа, зависит от сложности работы, количества элементов. Паять необходимо аккуратно, спешка станет причиной порчи.

Изготовление рамы

Солнечная батарея своими руками из подручных средств подразумевает изготовление специального основания в виде короба. Собирается он из пластика, также могут использоваться деревянные рейки либо металлический профиль. Невысокие бортики позволяют закрепить внутри плоское основание. После чего сверху укладывается прозрачное стекло – позволяет защитить элементы от дождя, иных неблагоприятных воздействий. Изготовить короб можно из прямоугольного листа фанеры либо ДСП. Выбирать основу необходимо с учетом площади поверхности основания.

Процесс изготовления рамы включает следующие основные этапы:

· дрелью, сверлом 10 мм делается некоторое количество отверстий (расстояние между ними – 10 см) – они создают приток холодного воздуха, отводят тепло (процесс работы элементов подразумевает их нагрев);

· края рамки снабжаются бортиками – высота должна составлять 2 см (тень на поверхность попадать не должна);

· удобным способом из прозрачного пластика либо обычного стекла вырезается лист площадью совпадающий с рамой;

· далее лист пластика/стекла аккуратно располагается на раме, крепится доступным способом (хорошее решение — клей);

Стоит помнить: крепление стекла должно осуществляться уже после расположения внутри спаянных деталей. После завершения предыдущих этапов работы требуется изготовить прижимной каркас. Отлично подходит алюминий.

Материал прозрачной крышки не должен создавать блики – иначе энергия солнечных лучей, преобразуемая кремнием, будет отражаться. КПД конструкции существенно упадет. После изготовления прижимной рамы, остальных необходимых компонентов можно собирать заранее подготовленные модули.

Сборка модулей

Рассматриваемый этап – самый ответственный. Собирается единая цепь, состоящая из различных элементов. При возникновении трещин, иных механических дефектов весь модуль придется спаивать заново – это приведет к потере времени. Важно подготовить, собрать контролер заряда. Можно приобрести уже готовое устройство либо самостоятельно собрать таковое. Чтобы спроектировать контролер следует рассчитать нагрузки, подобрать подходящие диоды.

Отличное решение – МРТ-7210 А. Готовое устройство снабжается светодиодным экраном, регулировками, индикаторами. Приобрести такое можно в магазине радиоэлектроники.

Можно попробовать собрать контролер самостоятельно. Для этого потребуются глубокие знания теоретических основ электротехники, электроники. Самостоятельная сборка обойдется дешевле. Стандартная схема контролера питания:

Основные этапы сборки отдельных модулей в единую конструкцию:

· компоненты аккуратно раскладываются на прозрачной крышке – необходимо выдержать между отдельными компонентами расстояние 3-5 мм (можно сделать небольшие пометки карандашом, маркером);

· паяльником, нагретым до температуры 1850С, спаиваются выводы каждого компонента – согласно маркировке.

Положительные контакты располагаются на фронтальной стороне. Отрицательные – на минусовой.

Необходимо размещать все отдельные компоненты в определенной последовательности. Иначе возникает вероятность повреждения. Вертикальные ряды аккуратно пропаиваются в общую шину. Дальнейшая работа включает основные этапы:

· фотоэлементы приклеиваются на прозрачную крышку – необходимо нанести некоторое количество герметика, убрать лишний (необходимо следить, чтобы все компоненты располагались согласно разметки);

· сверлом 8 мм изготавливается пара отдельных отверстий – через них пропускается пара проводов (положительный и отрицательный);

· цепь снабжается контролером заряда – конструкция аккуратно впаивается (устройство позволяет предотвратить разряд в темное время суток);

· каждый вывод должен быть обязательно зафиксирован – используется герметик;

· вся конструкция аккуратно располагается внутри рамы собранной ранее.

Когда сборка полностью завершена – следует обязательно проверить работу всей конструкции. Чтобы сделать это следует расположить раму под солнцем, проверить наличие напряжение мультиметром.

Значения, полученные путем измерения, требуется сравнить с расчетными. Для этого нужно перемножить количество пластин на ток одной. Если значения совпадут, либо погрешность будет в пределах 1-10% — все сделано правильно. Чтобы герметизировать все соединения желательно использовать специальные водостойкие герметики. Выбранный клей должен выдерживать резкие перепады температур.

Чтобы добиться максимальной герметизации следует расположить раму под прессом. Действовать нужно аккуратно – особенно если используется обычное стекло. Даже небольшая трещина может стать причиной падения КПД (создаст тень).

До начала заливки можно установить демпфер – изготавливается из поролона, располагается между фотоэлементами и плитой. Ширина должна быть меньше толщины бортиков. Подключить собранную конструкцию следует через инвертор, аккумулятор. По желанию допускается использовать стабилизатор напряжения. Разобраться как самому сделать солнечную батарею не составит труда. Большая часть работы требует базовых знаний физики. Все необходимое для сборки есть в магазинах электроники.

Если вам было интересно, возможно вас заинтересует также статья «Как сделать ветрогенератор своими руками»

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector