6 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Релейная плата своими руками

Содержание

Реле модуль для Arduino своими руками (DIY)

Опубликовано 09.06.2015 15:58:00

Проведена ревизия статьи, доступны Eagle файлы для скачивания, добавлены 3 варианта реле модулей.

В вашем проекте требуется включать/выключать освещение, либо что-нибудь иное, что, в силу потребляемого напряжения и тока, нельзя подключить напрямую к портам Arduino? С данной задачей отлично справится реле модуль!

Немного теории

Электромагнитное реле — устройство, замыкающее и размыкающее механические электрические контакты (зеленые точки) при подаче на обмотку реле (выводы обмотки отмечены красными точками) электрического тока.

Реле бывают различными по величине коммутируемого тока и напряжения, по количеству пар коммутационных контактов, по питающему напряжению катушки реле. Для наглядного примера остановимся на синих, знакомых глазу Ардуинщика, реле марки SONGLE SRD-05VDC. Они позволяют коммутировать до 10А 30V DC и 10A 250V AC, при подаче на обмотку реле всего 5 Вольт.

Реле модуль с транзистором в ключевом режиме

В архиве «Реле модуль DIP«

Казалось бы, раз реле включается от пяти вольт, то можно просто напросто подключить реле к цифровому выводу как светодиод. Но не всё так просто. Дело в том, что реле потребляет около 70мА, в то время как порт контроллера способен выдать лишь 20мА. Справиться с этой проблемой нам поможет биполярный транзистор + небольшая обвязка. Транзистор представляет из себя радиодеталь с тремя ногами: база, коллектор и эмиттер. В данном случае будем использовать NPN типа. Когда на базе транзистора нет сигнала — он закрыт, при появлении напряжения транзистор открывается и ток беспрепятственно течет через переход коллектор-эмиттер. С транзистором определились, переходим к обвязке.

Для корректной работы потребуются два резистора R1 и R2. R1 является токоограничительным и устанавливается для защиты порта контроллера. Во избежание ложных срабатываний, базу транзистора следует притянуть к земле резистором R2. Катушка реле является по сути своей индуктивностью, при резком обрыве тока на ней происходит скачок напряжения, который в последствии может вывести транзистор из строя. За сим следует замкнуть катушку на саму себя установив для этого диод D1 встречно напряжению.

Реле модуль с опторазвязкой

В архиве «Реле модуль DIP (оптрон)» и «Реле модуль SMD (оптрон)«

Более навороченным вариантом является реле модуль и опторазвязкой. Опторазвязка позволяет разделить цепь питания обмотки реле и сигнальную цепь Arduino.

В модулях используются широко распространенные оптроны PC817 (EL817), так что проблем с покупкой возникнуть не должно. Оптрон представляет из себя радиодеталь внутри которой находится фотодиод и фототранзистор, т.е сигнал передается через свет, Оптрон имеет 4 вывода назначение которых можно увидеть на картинке снизу.

При использовании оптрона схема не сильно усложнится. Добавится только токоограничительный резистор R1 для фотодиода. Т.к не всегда под рукой оказывается два источника питания, то на модулях было решено оставить возможность работы от одного источника путем замыкания джампера (об этом чуть ниже).

Подключение реле модуля с опторазвязкой

1. Питание от различных источников

Питание обмотки реле подключается к контактам «RV» и «RG», а управляющее к выводам «S» и «G».

Читать еще:  Небольшая электрическая печь для фьюзинга своими руками

2. Питание от одного источника

Замкнув джампер, мы объединили земли. Теперь модуль можно питать от одного источника.

В архиве лежат шаблоны под ЛУТ, Eagle файлы и списки деталей.

Открываем изображение => Печать => Во всю страницу

Для облегчения распайки smd компонентов с обратной стороны платы, где нет маркировки, приведу картинку.

А как же комментарии?

В данный момент еще реализованы не все элементы нашего сообщества. Мы активно работаем над ним и в ближайшее время возможность комментирования статей будет добавлена.

Реле Arduino: устройства управления высоковольтным напряжением

В этом уроке по реле Ардуино мы научимся управлять высоковольтными устройствами с помощью микроконтоллеров Arduino.

Обзор

Мы можем управлять высоковольтными электронными устройствами с помощью реле. Реле на самом деле является переключателем, который электрически приводится в действие электромагнитом. Электромагнит активируется низким напряжением, например, 5 В от микроконтроллера, и он тянет контакт, чтобы создать или разорвать цепь высокого напряжения.

Модуль реле HL-52S для Ардуино

В качестве примера для этого урока по реле Arduino мы будем использовать 2-канальный релейный модуль HL-52S, который имеет 2 реле с номиналами 10 А при 250 и 125 В переменного тока и 10 А при 30 и 28 В постоянного тока. Выходной разъем высокого напряжения имеет 3 контакта, средний является общим контактом, и, как видно из маркировки, один из двух других контактов предназначен для нормально разомкнутого соединения, а другой — для нормально замкнутого соединения.

На одной из сторон модуля у нас есть 2 набора контактов. Первый имеет 4 контакта, заземление и контакт VCC для питания модуля и 2 входных контакта In1 и In2. Второй набор контактов имеет 3 контакта с перемычкой между JDVcc и контактом Vcc.

Комплектующие

Компоненты, необходимые для этого урока мы перечислим ниже. Вы можете заказать все комплектующие в удобном вам интернет-магазине:

  • Модуль реле 5 В
  • Плата Arduino
  • Макетная плата и провода-перемычки
  • Кабель, вилка, розетка

Принципиальная схема

Для лучшего понимания работы с реле Ардуино давайте рассмотрим принципиальную схему релейного модуля в этой конфигурации. Таким образом, мы можем видеть ниже, что 5 вольт от нашего микроконтроллера, подключенного к выводу Vcc для активации реле через оптрон, также подключены к выводу JDVcc, который питает электромагнит реле. Таким образом, в этом случае мы не получили изоляции между реле и микроконтроллером.

Чтобы изолировать микроконтроллер от реле, нам нужно снять перемычку и подключить отдельный источник питания для электромагнита к JDVcc и контакту заземления. Теперь с этой конфигурацией микроконтроллер не имеет физического соединения с реле, он просто использует светодиодную подсветку ИС оптопары для активации реле.

Есть еще одна вещь, которую следует отметить в этой принципиальной схеме. Входные контакты модуля работают в обратном порядке. Как мы видим, реле будет активировано, когда входной контакт будет НИЗКИМ, потому что таким образом ток сможет течь от VCC к входному контакту, который является низким или заземленным, светодиод загорится и активирует реле. Когда входной вывод будет ВЫСОКИМ, ток не будет течь, поэтому светодиод не загорится и реле не будет активировано.

Как использовать релейный модуль с устройствами высокого напряжения

Сначала давайте посмотрим на принципиальную схему. Как описано ранее, мы будем использовать адаптер 5 В в качестве отдельного источника питания для электромагнита, подключенного к JDVcc и заземляющему выводу. Вывод Arduino 5V будет подключен к выводу Vcc модуля, а вывод 7 к входному выводу In1 для управления реле. Теперь для части «высокое напряжение» нам понадобится вилка, розетка и кабель с двумя проводами. Один из двух проводов будет обрезан и подключен к общему и нормально разомкнутому контакту выходного разъема модуля. Таким образом, в этой конфигурации, когда мы активируем реле, мы получим замкнутую и рабочую высоковольтную цепь.

Ниже коснемся того, как сделать кабель. Нам нужны вилка, розетка и кабель. Аккуратно обрезаем кабель и обрезаем один из проводов, как показано на рисунке ниже. Подключаем их к нормально разомкнутым контактам релейного модуля. Также подключаем концы кабеля к вилке и розетке.

Читать еще:  Очумелые ручки своими руками - видео самоделок из передачи «Пока все дома»

Окончательный вид кабеля, готового к использованию, ниже. Прежде чем использовать кабель, убедитесь, что он работает правильно. Вы можете проверить это с помощью мультиметра или сначала проверить его при низком напряжении.

Исходный код

Осталось написать простой код для нашего реле Ардуино и протестировать модуль на то, как он будет работать. Сам код достаточно простой, мы будем просто использовать контакт 7 для управления реле, поэтому мы определим его как выход и создадим программу, которая будет просто активировать и деактивировать реле каждые 3 секунды. Здесь я еще раз упомяну, что вход модуля работает обратно, поэтому низкий логический уровень на входе фактически активирует реле, и наоборот.

Были протестирована 3 устройства на основе данного примера. Сначала лампочка мощностью 100 Вт, затем настольная лампа и тепловентилятор. Все эти устройства работают на 220В. Таким образом возможно управлять любым высоковольтным устройством с помощью Arduino или любого другого микроконтроллера. И, конечно, возможности безграничны, например, мы можем управлять устройствами с помощью пульта дистанционного управления телевизора, Bluetooth, SMS, Интернета и так далее.

Модуль реле для arduino: компоненты и схема сборки

Сегодня я расскажу, как собрать свой собственный релейный модуль, которое можно использовать где угодно: с Arduino, Распбери Пи и т.д. Цена такого реле будет очень низкой.

Причиной создания релейного модуля ардуино был мой проект, который мне нужно было завершить в короткие сроки. Как назло, в гараже не оказалось ни одного модуля. Я пошел в местный магазин, но там не оказалось ни одного модуля реле на 5 или 6 Вольт. Зато у них были сами реле, я купил несколько и на их основе сделал свой собственный модуль.

Модули дешевы и просты в в сборке, собирая их вручную вы сможете сэкономить немного денег. В то же время этот модуль может использоваться как обычный покупной модуль. Мой модуль — одноканальный, но вы можете сделать свою сборку на той же печатной плате — для создания дополнительных каналов сделайте копии той же самой схемы на одной печатной плате.

Шаг 1: Собираем нужные компоненты

Для изготовления реле arduino нужно собрать определённые компоненты по списку. Много из того, что пригодится, может просто лежать у вас в гараже.

  1. Реле на 5V (я использовал реле на 6V, потому что мне нужно было реле на 6V).
  2. Транзистор BC548.
  3. Резистор 100 Ом.
  4. Диод IN4001.
  5. Винтовые клеммы (3 полюса, 2 шт.)
  6. Светодиод (красный или зелёный)
  7. Покрытая медью плата 5 * 3 см (опционально, если используете печатную плату общего назначения)
  8. Печатная плата общего назначения (опционально, если используете медную плату).
  9. Макетная плата и джамперы.
  1. Паяльник
  2. Провода
  3. Паяльная паста (опционально, но рекомендую её использовать)
  4. Соединительный провод

Шаг 2: Тестирование макетной платы

Теперь, когда мы собрали всё необходимое, нам нужно протестировать электросхему модуля реле на макетной плате. Не пропускайте этот шаг, он необходим во избежание ошибок при пайке на печатной плате и проверки, что всё работает хорошо.

Посмотрите на схему и раскладку печатной платы. Затем соберите всё по схеме на макетной плате. Дважды проверьте, что всё собрано правильно. Я приложил распиновку для резистора BC548 — будьте аккуратны при его подсоединении.

Теперь нам нужно проверить работу собранного устройства:

  1. Скачайте файл relay.ino, затем откройте его в вашем Ардуино.
  2. Соедините пины VCC и GND на модуле реле с соответствующими пинами 5V и GND на Ардуино.
  3. Соедините входной пин реле (он выходит из основания транзистора) с цифровым пином 12 на Ардуино.
  4. Загрузите код.
  5. Проверьте, что реле включается и выключается с интервалом в одну секунду (светодиод на реле будет также загораться и потухать с интервалом в одну секунду)

Если схема не работает, немедленно выключите Ардуино. Затем проверьте всю схему на правильность соединения, если что-то соединено неправильно — исправьте и затем заново включите Ардуино.

Читать еще:  Микро powerbank своими руками

Если всё работает как надо, то переходим к сборке схемы на печатной плате общего назначения или специальной печатной плате.

Шаг 3: Самодельный модуль реле на печатной плате общего назначения (опционально)

Пришло время собрать схему на печатной плате общего назначения или специальной печатной плате. Этот шаг опционален, пропустите его, если вы решите изготовить для проекта специальную плату. На самом деле я рекомендую изготовить для проекта специальную плату, так как она будет более профессиональной и совершенной.

Здесь я объясню, как сделать модуль на плате общего назначения.

  1. Изготовьте печатную плату общего назначения и хорошо очистите её.
  2. После чистки натрите её флюсом (опционально).
  3. Установите компоненты на плате и припаяйте их.
  4. После того, как всё припаяно к плате, соедините всё проводами.

После того, как всё собрано, проверьте работоспособность реле методом, который я описал выше.

Шаг 4: Самодельный модуль реле на специальной печатной плате (опционально)

Этот шаг опционален, пропустите его, если вы уже делаете модуль на плате общего назначения. Я рекомендую вам использовать именно специальную плату, потому что она более профессиональна и с ней меньше шансов на короткое замыкание.

В приложенном видео показано, как сделать свою плату при помощи метода переноса тонера. После того, как вы сделали всё по видео, скачайте файл проекта Fritzing, в котором находится дизайн нашей платы. Откройте программу Fritzing, если вы не знаете, как работать с Fritzing, посмотрите это руководство.

Затем проделайте шаги, описываемые в руководстве по травлению печатных плат. После этого просверлите отверстия в плате дрелью на 0.8 — 1 мм, установите все компоненты и спаяйте их. Готово!

Шаг 5: Готово!

На изготовление одного модуля реле у меня ушло около 20 минут. Это быстро, недорого, а также экономит ваше время (при заказе онлайн доставка займёт минимум день, а поход в магазин занимает также больше 20 минут).

Рассказываю как сделать какую-либо вещь с пошаговыми фото и видео инструкциями.

Релейная плата своими руками

Эта схема является драйвером реле на основе микроконтроллера PIC16F84A. Плата включает в себя четыре реле, что позволяет управлять сразу четырьмя различными электрическими устройствами. Управляемое устройство может быть нагревателем, лампой, компьютером или двигателем. Чтобы использовать эту плату в промышленности, питающая часть разработана более тщательно. Чтобы свести к минимуму влияние сетевых помех, используется сетевого фильтр.

Схема релейного драйвера на микроконтроллере

Трансформатор сетевой для монтажа на печатной плате 220 В — 12 В, 3,6 ВА. Стеклянный предохранитель 250 В 400 мА используется для защиты цепи от повреждения из-за чрезмерного броска тока. Исполнительное устройство большой мощности, которое подключено к той же линии, может формировать нежелательные пики высокой амплитуды при включении и выключении. Чтобы обойти такие эффекты, варистор на 250 В параллельно подключен ко входу.

Другим защитным компонентом линии переменного тока является сетевой фильтр. Он также минимизирует электромагнитный шум. Последними компонентами в фильтрующей части являются неполярные конденсаторы емкостью 100 нФ 630 В. Когда частота увеличивается, емкостное сопротивление конденсатора уменьшается, поэтому оно играет важную роль в уменьшении эффектов высокочастотного шума. Для повышения эффективности один из них подключен ко входу, а другой — к выходу фильтра. После фильтрующей части диодный мост 1 A подключается для двухполупериодного выпрямления. Конденсатор 2200 мкФ стабилизирует выпрямленное напряжение. Схема контроллера содержит микроконтроллер PIC16F84A, транзисторы NPN и реле типа SPDT. Когда реле находится под напряжением (включено), оно потребляет около 40 мА. Как видно на схеме, реле подключены к контактам RB0-RB3 PIC через транзисторы BC141. Когда транзистор отключается, может возникнуть обратная ЭДС, и он может быть поврежден.

Чтобы предотвратить эту нежелательную ситуацию, между источником питания и транзисторными коллекторами стоят диоды 1N4007. В цепи есть и несколько резисторов токоограничения базы. Само устройство активирует следующее реле через каждые пять секунд, но можете настроить как вам требуется изменив программу. Примеры кода и печатные платы включены в общий архив проекта.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector