Маленькая солнечная панель своими руками
Маленькая солнечная панель своими руками
Сделай сам. Солнечная батарея своими руками
В то время как в Беларуси все больше и больше говорится об энергосбережении, субсидируемые тарифы на электроэнергию для населения далеки еще от уровня, при котором широкое использование альтернативной энергетики станет рентабельным. Солнечные модули и ветроустановки пока еще слишком дороги, чтобы получать с их помощью энергию для индивидуального потребления. Тем не менее альтернативная энергетика постепенно развивается и занимает свою нишу, позволяя экономить деньги.
В качестве примера можно привести недавно появившиеся на трассе Брест – Москва знаки, предупреждающие о пешеходном переходе. Они оборудованы светодиодной подсветкой, видной издалека. Над знаком установлен солнечный модуль, заряжающий в дневное время аккумулятор, который, в свою очередь, отдает энергию ночью.
Альтернативная энергетика выгодна там, где невозможно или очень дорого провести обыкновенную электролинию. В вышеописанном случае тянуть электричество к знаку перехода пришлось бы на многие километры, потратив при этом десятки миллионов рублей, в то время как солнечный модуль обошелся в несколько сотен долларов. Таких примеров можно привести множество: в южных странах уже появляются базовые станции сотовой связи на солнечных батареях, рекламные щиты с подсветкой и даже светодиодные фонари дорожного освещения.
Своими руками
У автора давно назрела необходимость в автономном источнике питания. Летом, выезжая на природу на пикник, хорошо иметь с собой прохладные напитки и свежие продукты. Для этих целей в свое время был куплен автохолодильник, который подключается к прикуривателю автомобиля. В дороге, когда вокруг жара, в холодильнике всегда прохладно, и продукты доезжают к пикнику свежими и охлажденными. Но дальше возникали проблемы: включенным в машине холодильник надолго не оставишь – потребляя энергию, как автомобильная фара, он быстро посадит аккумулятор. В общем, к середине жаркого дня от холода не оставалось и следа.
Солнечная батарея как нельзя лучше должна подойти для вышеописанного случая. Ведь выезды на пикники происходят обычно в солнечную погоду, и отдача от солнечной батареи должна быть максимальной. Вот так возникла идея с помощью солнца получать холод.
Готовые солнечные модули, к сожалению, все еще очень дороги. Судя по паспорту, автохолодильник потребляет 48 ватт, и нужный по мощности модуль будет стоить никак не меньше 300 долларов. Это в России. В Беларуси такая диковинка будет стоить еще больше. Дороговато для пикника.
Выход был найден на блоге одного американского умельца, который для своей экспериментальной установки самостоятельно собрал солнечную батарею из некондиционных модулей. Такие в бесчисленном множестве продаются на известном аукционе eBay с пометкой “DIY” (что расшифровывается как Do It Yourself, “сделай сам”). Для поиска предложений достаточно ввести словосочетание “solar cells”. Обычно продаются плохо порезанные некондиционные модули с неровными кромками (sharpen edges). Качество модуля от этого сильно не страдает, и их вполне можно использовать для построения своей батареи.
Для сборки стандартной батареи мощностью 50 ватт обычно используют 36 модулей размером 3×6 дюймов с КПД 11%. Каждый модуль вырабатывает 0,5 вольт, ток – около 3 ампер. Соединяя модули последовательно, можно получить батарею мощностью около 50 ватт (напряжение при этом будет 18 вольт, а ток – до 3 ампер). Почему 18 вольт? Потому что это наилучшее напряжение для зарядки стандартных 12-вольтовых аккумуляторов. Ведь солнечная батарея обычно работает в связке с аккумулятором, который накапливает вырабатываемую энергию, позволяя расходовать ее, когда это нужно потребителю.
В нашем же случае мы можем обойтись и без аккумулятора, так как потреблять энергию мы будем днем, в солнечную погоду, непосредственно от солнечной батареи. Преобразователь на 12 вольт нам тоже не нужен, потому как автохолодильник не критичен к уровню напряжения и его стабильности. Более того, автохолодильник создаст такую нагрузку, что напряжение “просядет” до нормативных 12 вольт. Или даже ниже. Как показывают дальнейшие опыты, такие предположения оправданны.
Итак, необходимые 36 модулей были куплены на eBay с помощью банковской карты за 48,9 доллара (без торга, по “Buy It Now”). Доставка из США обошлась в 17,64 доллара. Хочу заметить, что за посылки стоимостью более 120 евро (включая стоимость доставки) придется платить таможенную пошлину. Поэтому не стоит заказывать много элементов сразу. При доставке выбирайте USPS – это почтовая служба США. Доставка экспресс-службами DHL, UPS и прочими будет стоить дороже, к тому же придется платить пошлину.
Посылка пришла на удивление быстро. Меньше чем за две недели. Модули, несмотря на их хрупкость, оказались целыми – видимо, благодаря хорошей упаковке. Более того, продавец положил два запасных, на всякий… Забегая вперед, скажу, что они оказались не лишними. Модули действительно очень хрупкие. Достаточно неаккуратно нажать пальцем, и модуль разлетается на мелкие осколки, как кусочек слюды. В итоге два модуля по неосторожности расколол при монтаже.
Сначала на ровном столе спаял 4 цепочки по 9 модулей. Затем начал их монтировать. На заводах солнечные модули монтируют твердую поверхность, закрывая сверху специальным каленым стеклом. В дождь с градом панель использовать не собираюсь, поэтому из подручных материалов подойдет и оргстекло. В качестве подложки использовал обыкновенную фанеру. Вырезав куски 66 на 77 см, с помощью строительного скотча прикрепил все 4 цепочки модулей к оргстеклу. Далее спаял все 4 цепочки между собой, прикрепил колодку с винтиками, выведя туда провода.
По краям оргстекла был проложен вспененный двухсторонний двухмиллиметровый скотч. То же самое было сделано и в промежутках между цепочками. Сверху накрыл все фанерой. Получился такой “пирог”: фанера, воздух, модули, оргстекло. Толстый скотч не дает соприкасаться фанере и оргстеклу, сохраняя пространство для хрупких модулей. Ведь их очень легко раздавить.
Вот что получилось:
В следующие же выходные выехали на Вилейку на тестирование. День был не самый удачный. По России гудели пожары, а у нас была легкая дымка, изредка скрывающая солнце пеленой так, что на него можно было смотреть. Тем не менее батарея показала неплохие результаты.
Для тестирования в качестве нагрузки был использован холодильник, потребляющий автомобильные 12 вольт, 4 ампера. Замерялось напряжение, выдаваемое батареей при подключенном холодильнике, и его потребляемый ток:
Как видно, мощность батареи не достигла заявленных идеальных 50 ватт. Этого и стоило ожидать. Все-таки у нас не Сахара, солнце не такое сильное. Также стоит учесть некондиционность модулей и покрытие из примитивного оргстекла.
Однако даже когда скрывалось солнце и тень сливалась с окружающим фоном, холодильник продолжал работать, выдавая холод. Все продукты оставались холодными целый день. Цель достигнута!
Если у вас частный дом
…то об альтернативных источниках энергии можно задуматься уже сейчас.
Первое, с чего нужно начать, – это меры по энергосбережению. Экономичные лампочки, утепление стен, хорошие стеклопакеты, вентиляция с рекуперацией тепла. Неразумно обвешивать дом дорогими солнечными батареями, для того чтобы “раскочегарить” старую “лампочку Ильича” с КПД 5%.
Солнце – неисчерпаемый источник энергии. Именно она летом “обогревает” нашу половину земного шарика, принося гигантское количество энергии. Считается, что в солнечный день на один квадратный метр поверхности попадает более 1000 ватт солнечной энергии. Если всю ее суметь преобразовать, то за пару минут можно вскипятить литр воды (сравните, мощность одного чайника обычно составляет 2000 ватт).
На практике КПД распространенных солнечных элементов составляет около 20%. То есть с 1 квадратного метра батареи вы получите около 200 ватт электрической энергии. Возьмите среднюю стоимость батареи такой площади, умножьте на количество нужных вам ватт. Добавьте сюда хитрую электронику (стоимостью в тысячи долларов), которая позволяет накапливать энергию либо отдавать излишки во внешнюю сеть… Сделайте поправку на количество ясных дней в Беларуси (их около 30-40 в год). И поймете, что сэкономить на электричестве, используя солнечные батареи, вам не удастся. Разве что питать “халявной” энергией некритичные источники: светодиодные светильники на лужайке в саду.
Для отопления дома и подогрева горячей воды есть другие, более эффективные способы. Солнечные коллекторы. Их все больше и больше устанавливают в Европе. КПД вакуумных солнечных коллекторов (а именно такие лучше всего использовать в наших условиях) достигает 80%. По свидетельству пользователей, в минских условиях, в летнее время и в межсезонье, в частных домах удается забыть о подогреве горячей воды с помощью традиционных видов топлива. Принцип работы вакуумного коллектора заключается в том, что солнце через прозрачную колбу с разреженным воздухом нагревает трубку с жидкостью-теплоносителем. Поскольку трубка с горячей жидкостью отделена от окружающей среды, потерь тепла не происходит. Такие коллекторы могут работать даже в солнечный зимний день.
Солнечные перспективы
Для того чтобы оценить перспективы развития солнечной энергетики в Беларуси, необходимо ответить на следующие вопросы:
1. Какую нишу может занять солнечная энергетика?
2. Каковы перспективы развития солнечных технологий?
Как было показано выше, уже сейчас имеет смысл использовать солнечные батареи в местах, удаленных от линий электропередач и не критичных к постоянному наличию электроэнергии. Со временем солнце может занять свою нишу и в большой энергетике. На данный момент основными генерирующими мощностями в Беларуси являются ТЭЦ и ГРЭС. И если КПД ТЭЦ, благодаря когенерации тепловой энергии, достигает 80-90%, то КПД ГРЭС не превышает 40%. ТЭЦ являются основными источниками энергии в отопительный период, ГРЭС – летом. Также стоит отметить, что потребление энергии днем в 2 раза превышает потребление ночью. Получается, что дороже всего электроэнергия обходится нам летним днем, то есть в период максимальной выработки энергии солнечными батареями. Вопрос, как всегда, в цене.
В последнее время солнечные технологии переживают бурное развитие. Достаточно сказать, что максимально достижимый КПД солнечных элементов за последние 10 лет увеличился с 32 до 42%. Объемы производства растут на 60-100% каждый год. Даже в кризисный 2009 год, когда цена нефти упала до 30$ за баррель, рынок солнечных элементов вырос на 25%. Также постоянно снижается и их себестоимость. Появляются новые дешевые способы производства солнечных батарей. При средней стоимости солнечных модулей 4$ за ватт установленной мощности в США уже продаются тонкопленочные модули с ценой 1$/Вт. Причем уже достигнута себестоимость производства 0,3$/Вт. Средняя себестоимость киловатт-часа солнечной энергии в США сегодня составляет 19 центов и снизилась более чем на 10% за последние два года. Для сравнения: на сегодняшний день субсидируемый тариф на электричество для населения в Беларуси равен 125 рублям, или 4 центам.
Вместе с тем тариф для нужд отопления и горячего водоснабжения с присоединенной мощностью оборудования более 5 кВт равен 865 рублям, или 29 центам. В условиях Беларуси при себестоимости 0,3$/Вт стоимость солнечного аналога проектируемой АЭС составит $4-7 млрд при сравнимом сроке эксплуатации и практически нулевых эксплуатационных затратах. На практике заменить АЭС на СЭС, конечно же, не получится ввиду непостоянства выработки энергии на СЭС.
Таким образом, достигнутый уровень развития солнечных технологий и его динамика позволяют сделать вывод о том, что солнечная энергетика рано или поздно появится и в Беларуси. На данном этапе в Беларуси целесообразно принять закон об альтернативной энергетике, который бы стимулировал развитие этого направления. Также необходим пересмотр технических стандартов электросетей и оборудования с тем, чтобы предоставить возможность отдачи выработанной локально, с помощью солнечных батарей, энергии в общую сеть.
Другие источники
Первое, что приходит на ум после солнечных установок, – это использование ветра. К сожалению, ветряки – очень дорогое удовольствие. И установишь их не на каждом подворье. Более перспективной для обогрева дома зимой представляется… геотермальная энергия. Да-да, в Беларуси, где нет вулканов и подземных озер с кипятком.
Появился целый класс установок, называемых тепловыми насосами. Тепловой насос позволяет “выкачивать” из земли тепловую энергию и пустить ее на обогрев дома. Внешний контур насоса закладывается в землю, на уровень, где почва всегда остается положительной температуры. Внутренний контур обогревает дом. Для описания принципа работы теплового насоса часто приводят аналогии “холодильника наоборот”. Выкачивая малые доли тепла из-под земли, насос нагревает внутренний контур отопления до температуры около 30 градусов Цельсия.
Стоимость тепловых насосов для частных домов на текущий момент упала ниже десяти тысяч евро, что в свете повышения цен на топливо представляется рентабельным. Многие продавцы заявляют о 200-300% КПД таких установок. Потребляя из сети около 3 киловатт энергии, установка дает тепла в 2-3 раза больше. К сожалению, в Беларуси есть проблемы с установкой таких устройств. Энергетики считают, что дом отапливается электричеством, и повышают цены на потребляемую электроэнергию в разы. Кроме того, высокие таможенные пошлины на ввоз таких установок не имеют ничего общего с попытками Беларуси стать энергонезависимым государством.
Сергей Коростель, Александр Лукьянчик, ET CETERA
Как сделать солнечную батарею своими руками?
Многие компании в интернете реализуют уже готовые собранные панели, которые напрямую подключаются к потребителю. Но, такие устройства имеют куда большую стоимость, чем отдельные элементы. В связи с особенностью климатического пояса полностью перейти на солнечную электроэнергию у вас вряд ли получится, поэтому и готовые солнечные батареи смогут окупиться только через 10 — 40 лет. Чтобы сэкономить на дорогостоящих заводских панелях, куда выгоднее приобрести фотоэлектрические модули, комплектующие к ним и заняться сборкой ячеек в единую солнечную батарею самостоятельно.
Какой вариант выбрать?
Первое, что вам нужно – приобрести фотоэлектрический преобразователь. Различные модели предлагаются как отечественными производителями, так и зарубежными. Наиболее дешевыми вариантами являются китайские кремниевые фотоэлементы. Они имеют ряд недостатков, но, в сравнении с американскими и отечественными, куда более дешевые. Все модели, в зависимости от типа, подразделяются на три вида:
- монокристаллические модули – состоят из искусственно выращенных кристаллов достаточно больших размеров. Отличаются самым высоким КПД в 13 – 26% и самым длительным сроком эксплуатации в 25 лет. Недостатком солнечных батарей на их основе является снижение максимального КПД в течении периода эксплуатации.
- поликристаллические фотоэлементы – в сравнении с предыдущими имеют куда меньший срок эксплуатации, как заявляет производитель – 10 лет. Также они могут выдать только 10 – 12% КПД, в с равнении с предыдущими, зато этот параметр остается постоянным для них в течении всего периода работы.
- аморфные батареи – это пленочные батареи, в которых на гибкую основу нанесен аморфный кремний. Такие фотоэлементы появились сравнительно недавно и могут наклеиваться на любые поверхности – окна, стены и т.д. Они характеризуются самым низким КПД – 5 – 6%.
Выбор определенного типа зависит от ваших пожеланий и поставленных задач. К примеру, если количество солнечного излучения сравнительно невелико в вашем регионе, лучше устанавливать монокристаллические преобразователи, так как у них самый высокий КПД.
Подготовка инструментов и выбор материалов
Помимо преобразователей, для сборки полноценной солнечной панели вам понадобятся такие материалы:
- Припой – для солнечной батареи необходимы легкоплавкие оловянные сплавы.
- Соединительные провода – подбираются однопроволочные медные марки. Для соединения монокристаллических и поликристаллических пластин применяются голые проводники, а для отвода электроэнергии изолированные.
- Рамка – создает основной каркас, в котором располагается вся солнечная батарея. Состоит из основания – ДСП, USB, фанеры и прочих, металлических или деревянных планок, уголков и саморезов для их соединения.
- Стекло или полимерная пластина – создают защитный слой поверх монокристаллических пластин, также, в сочетании с рамой, служат для скрытия элементов от воздействия атмосферных осадков и механических воздействий.
- Герметик – наилучшим материалом для герметизации является эпоксидный компаунд, но это достаточно дорогостоящее удовольствие, поэтому его можно заменить силиконовым герметиком.
- Аккумуляторная батарея – предназначена для накопления электрической энергии в светлое время суток с целью дальнейшего использования. Экономить при выборе батареи не стоит, так как качественная модель прослужит гораздо дольше.
- Инвертор – используется для преобразования постоянного напряжения в переменное. Преобразователь напряжения необходим для подключения к солнечной батареи любых бытовых приборов.
Из инструментов вам пригодиться ножовка, дрель, шуруповерт или обычная отвертка для закручивания саморезов, мультиметр или амперметр для определения работоспособности солнечной батареи, паяльник.
Составление проекта
На этапе подготовки проекта необходимо определить наиболее подходящее место для установки солнечной батареи. Определите, с какой стороны участка находиться больше всего солнечных лучей, не падает тень от деревьев и других построек. Место установки может быть на земле, скатах крыши, стенах или отдельно стоящих конструкциях. К примеру, если вы хотите установить солнечную батарею на крыше, следует убедиться, что конструкция выдержит ее вес.
Из-за того, что максимальная производительность моно- и поликристаллических ячеек обеспечивается исключительно при перпендикулярном попадании на них солнечных лучей, желательно собрать для них регулируемую конструкцию. Которая позволит изменять угол наклона солнечной батареи, в зависимости от времени года или даже времени суток. Так как положение источника света в различные периоды года и суток значительно отличаются (рисунок 1).
Рис. 1: зависимость положения солнца от времени года
Также обратите внимание, что в стационарно установленной батарее, к примеру, вырабатывающая в идеальных условиях 7 кВт/ч, утром и вечером будет вырабатыватся только 3 кВт/ч. Соответственно, при установке только в одном положении, батарея будет выдавать номинальную мощность лишь несколько месяцев в году. Если вы решите монтировать ее в стационарном положении, панели следует располагать под углом от 50 до 60º, для регулируемых устанавливается два предела – зимний в 70º и летний в 30º, а в промежуточный период, их наклоняют как стационарные.
Чтобы определить количество пластин, необходимо подсчитать, какой электрический ток или мощность генерирует одна из них или 1 м 2 . Как правило, 1 м 2 выдает порядка 125 Вт, поэтому чтобы получить около 2,5 кВт для бытовых нужд, необходимо установить 20 м 2 панелей.
Порядок изготовления солнечной батареи
Элементы на поли- или монокристаллическом кремнии необходимо объединить в единую панель. Для этого осуществляется пайка контактов к проводникам. Порядок пайки следующий:
- Оголенные проводники нарежьте одинаковыми отрезками под лекало, такой длины, чтобы она в два раза превышала размер элемента солнечной батареи.
Рисунок 2: отмерьте проводники с помощью лекала
- Выложите модули на ровную поверхность (секло, лист фанеры, стол и т.д.).
- Очистите электрические контакты и полудите оловом, накладывать большое количество припоя сюда не нужно, достаточно слегка покрыть контакт.
Рисунок 3: полудите контакты
- Припаяйте заранее полуженные проводники к контактам, обратите внимание, что сильно придавливать пластины нельзя, так как они очень хрупкие.
Рисунок 4: припаяйте провод к элементу
- Замерьте ток от одного элемента с проводниками, это поможет подсчитать суммарную величину для всей батареи.
Если приобретенные вами элементы для солнечных батарей уже оснащены соединительными проводниками, этот этап можно пропустить и сразу переходить к изготовлению рамки.
Изготовление рамки
Рамка солнечной батареи представляет собой короб с невысокими бортами, который накрывается прозрачным стеклом. Для изготовления рамки:
- Возьмите прямоугольный лист фанеры или ДСП такого размера, чтобы на нем могло располагаться нужное количество элементов. Просверлите в нем небольшие отверстия на расстоянии 10 см друг от друга для вентиляции.
Рис. 5: просверлите отверстия для вентиляции
- Приклейте по краю листа деревянные планки высотой не более 2 см, чтобы они не отбрасывали тень на солнечные приемники. Дополнительно прикрутите планки небольшими шурупами.
- Вырежьте крышку из стекла или прозрачного полимера. Ее размеры должны соответствовать нижнему листу или быть меньше, в зависимости от того, поддается она сверлению или нет. Если крышку можно прикрутит шурупом, то размер может быть идентичен, если стекло может лопнуть при попытке сверления, сделайте его меньше на 0,5 – 1 см.
Рис. 6: заготовьте крышку из стекла
- Изготовьте из алюминиевого уголка прижимной каркас для верхней прозрачной крышки солнечной батареи, но пока ничего не прижимайте.
Рис. 7. соберите солнечную батарею
Постарайтесь подобрать материал для прозрачной крышки без бликов, иначе часть энергии солнца будет отражаться, что значительно снизит КПД. После того, как изготовите рамку, соберите солнечную батарею.
Изготовление модулей
Данный этап требует особой осторожности и внимания, поскольку на нем вы формируете электрическую цепь солнечной батареи. Если допустите прожоги или трещины, вы можете испортить не только какой-либо конкретный элемент, но и весь модуль, который в итоге придется переделывать.
- Разместите солнечные коллекторы лицевой стороной на прозрачной крышке. Оптимально между элементами должно быть 3 – 5 мм, если этого трудно добиться с первого раза, можете сделать разметку на стекле.
Рис. 8: разместите элементы
- Аккуратно спаяйте выводы от каждого элемента «+» к «+», и «–» к «–». Плюсовые контакты должны располагаться на лицевой стороне, а минусовые на внутренней.
Рис. 9: спаяйте выводы элементов
Все элементы соединяются последовательно сверху вниз, чтобы не раздавить нижние, когда будете паять. Вертикальные ряды припаяйте на общую шину.
- Приклейте фотоэлементы к прозрачной крышке, для этого нанесите в центр элемента немного герметика и аккуратно придавите его. Следите, чтобы он располагался строго по разметке, рабочей поверхностью к стеклу, иначе переклеить потом будет проблематично.
Рис. 10: приклейте элементы к стеклу
- Просверлите в рамке отверстия для вывода плюсовой и минусовой шины солнечной батареи. В цепь батареи включите контроллер заряда, который предотвратит разряд заряда аккумулятора на солнечную батарею в темное время суток. Для этого подберите такие характеристики диодов, которые обеспечат полную блокировку цепи от обратного тока.
- Зафиксируйте выводы солнечной батареи в отверстиях при помощи герметика и поместите в рамку.
Рисунок 11: зафиксируйте провода герметиком
После того, как вы собрали батарею, проверьте ее работоспособность. Вынесите ее под солнечные лучи и замерьте величину тока на выводах.
Рис. 12: вынесите на улицу и проверьте мультиметром
Сравните это значение с ранее замеренной величиной для одного элемента солнечной батареи. Чтобы проверить правильность, умножьте количество элементов на ток от одного, если прибор показал такое значение или близкое к нему, солнечная батарея собрана правильно и ее можно герметизировать.
Для герметизации используются компаунды или силиконовые герметики, которые подходят для температуры ниже нуля. Для этого солнечную батарею можно как заливать полностью, так и нанести герметик только между модулями.
Рис. 13: залейте герметиком
Второй вариант более экономный, но первый обеспечит вам куда большую надежность и лучшую герметизацию. После герметизации сверху устанавливается умеренный пресс до полного застывания.
Рис. 14: установите умеренный пресс
До заливки вы можете установить демпфер из плотного поролона между фотоэлементами солнечной батареи и плитой из ДСП. Ширина поролона выбирается менее высоты борта, в рассматриваемом случае высота – 2 см, соответственно можно взять поролон 1,5 см в толщину. Готовые и проверенные батареи установите согласно составленного проекта и подключите к электрической сети дома через аккумулятор и инвертор.
Маленькая солнечная панель своими руками
Солнечная батарея своими руками (пошагово, фото)
Все началось с прогулки по сайту eBay –увидел солнечные панели и заболел.
Споры с друзьями об окупаемости были смешны…. Покупая автомобиль никто, не думает об окупаемости. Авто как любовница, готовь сумму на удовольствие заранее. А тут совсем наоборот, затратил деньги так они еще и пытаются окупиться… Кроме того, подключил к солнечным панелям инкубатор так они еще как оправдывают свое предназначение, предохраняя ваше будущее хозяйство от гибели. В общем, имея инкубатор, ты зависишь от многих факторов, тут либо пан, либо профан. Когда будет время, напишу о самодельном инкубаторе. Ну ладно чего рассуждать, каждый в праве выбирать….
После долгих ожиданий, заветная коробочка с тонкими хрупкими пластинками, наконец, греет руки и сердце.
Первым делом конечно Интернет … ну, не боги горшки обжигают. Опыт чужой всегда полезен. И тут наступило разочарование….. Как оказалось, своими руками панели сделали человек пять, остальные просто перекопировали на свои сайты, причем некоторые, дабы быть оригинальней скопированы с разных разработок. Ну да бог с ними пусть это остается на совести хозяев страничек.
Решил почитать форумы, долгие рассуждения теоретиков «как доить корову» привели в полное уныние. Рассуждения о том, как ломаются пластины от нагрева, трудности герметизации и т д. Почитал и плюнул на все это дело. Мы пойдем своим путем, методом проб и ошибок, опираясь на опыт «коллег», чего изобретать велосипед?
1) Панель должна быть изготовлена из подручных материалов, дабы не тянуть кошелек, ибо неизвестен результат .
2) Процесс изготовления должен быть нетрудоемким.
Начинаем изготовление солнечной панели:
Первым делом были приобретены 2 стекла 86х66 см. для будущих двух панелей.
Стекло простое, приобретал у производителей пластиковых окон. А может и не простое…
Долгий поиск алюминиевых уголков, по опыту уже проверенному «коллегами» закончился ничем.
Потому процесс изготовления начинался вяло, с чувством долгостроя.
Процесс пайки панелей описывать не стану, так как в сети много информации про это и даже видео есть. Просто оставлю свои заметки и замечания.
Не так страшен черт, как его малюют.
Не смотря на трудности, которые описывают на форумах, пластины элементов паяются легко, как лицевая сторона, так и тыльная. Так же, вполне пригоден наш советский припой ПОС- 40, во всяком случае, никаких трудностей я не испытал. Ну и конечно, наша родная канифоль, куда без нее… За время пайки не сломал ни одного элемента, думаю надо быть полным идиотом, чтобы сломать их на ровном стекле.
Проводники, которые идут в комплекте к панелям, очень удобны, во-первых, они плоские, во-вторых, они луженные, что значительно сокращает время пайки. Хотя вполне можно использовать обычный провод, провел эксперимент на запасных пластинах, трудностей в пайке не испытал. ( на фото остатки плоского провода)
На пайку 36 пластин у меня ушло около 2 часов. Хотя на форуме читал, что люди паяют по 2 дня.
Паяльник желательно использовать на 40 Вт. Так как пластины легко отводят тепло, а это затрудняет пайку. Первые попытки паять 25 Ватным паяльником были нудными и печальными.
Так же при пайке желательно оптимально подбирать количество флюса (канифоли). Ибо большой избыток ее не дает прилипнуть олову к пластине. А потому приходилось практически залуживать пластинку, в общем, ничего страшного, все поправимо. (приглядитесь на фото видно.)
Расход олова довольно большой.
Ну вот, на фото пропаянные элементы, во втором ряду косяк, не пропаян один вывод, но ничего главное заметил и исправил.
Окантовка стекла сделана двухсторонним скотчем далее на этот скотч будет приклеена полиэтиленовая пленка.
Скотчи, которые использовал.
После припайки, начало герметизации (скотч вам в помощь).
Ну вот, проклеенные пластины скотчем и исправленным косяком.
Далее с окантовки панели снимаем защитный слой двухстороннего скотча и приклеиваем на нее полиэтиленовую пленку с запасом на края. (сфоткать забыл) Ах да, в скотче проделываем прорези для отходящих проводов. Ну не глупые, поймете, что и когда… По краю стекла, а так же выводы проводов, углы, промазываем силиконовым герметикам.
И загибаем пленку на внешнюю сторону.
Предварительно было изготовлена рамка из пластика. Когда в доме устанавливал пластиковые окна, на окно шурупами крепят пластиковый профиль для подоконника. Посчитал, что эта часть слишком тонкая. А потому удалил и сделал подоконник по своему. Потому, от 12 окон остались пластиковые профили. Так сказать материал в избытке.
Рамку клеил обычным, старым, советским утюгом. Жаль, процесс не снимал, но думаю, ничего тут сверх непонятного нет. Отрезал под 45 градусов 2 стороны, нагрел на подошве утюга и приклеил предварительно установив на ровный угол. На фото рамка под вторую панель.
Устанавливаем стекло с элементами и защитной пленкой в рамку
Лишнюю пленку обрезаем, а края проклеиваем силиконовым герметикам.
Получаем вот такую панель.
Да, забыл написать, что кроме пленки к рамке приклеил направляющие, которые не дают упасть элементам, если скотч отклеиться. Пространство между элементами и направляющими залито монтажной пеной. Что позволило прижать плотнее элементы к стеклу.
Ну, начнем испытания.
Так как панель одну я изготовил заранее, результат одной мне известен Напряжение 21Вольт. Ток короткого замыкания 3,4 Ампера. Сила тока заряда аккумуляторной батареи 40А. ч 2,1 Ампера.
К сожалению не фоткал. Надо сказать, что сила тока круто зависит от освещенности.
Теперь соединенные параллельно 2 батареи.
Погода на момент изготовления была облачная, было около 4 часов дня.
Вначале меня это расстроило, а потом даже обрадовало. Ведь это самые усредненные условия для батареи, а значит результат правдоподобнее, чем при ярком солнце. Солнышко просвечивало через облака не так ярко. Надо сказать, что и светило солнышко немного сбоку.
При таком освещении ток короткого замыкания составил 7.12 Ампер. Что считаю превосходным результатом.
Напряжение без нагрузки 20,6 Вольт. Ну, это стабильно около 21 вольта.
Ток заряда АКБ 2,78Ампера. Что при таком освещении гарантирует заряд АКБ.
Замеры показали, при хорошем солнечном деньке результат будет лучше.
К тому времени погода ухудшалась, тучи закрыли, солнышко полностью и мне стало интересно, а что покажет при таком раскладе. Это же практически вечерние сумерки…
Небо выглядело так, специально снял линию горизонта. Да впрочем, на самом стекле батареи видно небо как в зеркало.
Напряжение при таком раскладе 20,2 вольта. Как уже говорилось 21в. это практически константа.
Ток короткого замыкания 2,48А. В общем, то, для такого освещения замечательно! Практически равен одной батареи при хорошем солнышке.
Ток заряда АКБ 1,85 Ампера. Ну что сказать… Даже в сумерки АКБ будет заряжаться.
Вывод построена солнечная батарея, не уступающая по характеристикам промышленным образцам. Ну а долговечность…. будем смотреть, время покажет.
Ах да, заряд батареи ведется через диоды Шоттки на 40 А. ну, что нашлось.
Так же хочу сказать про контроллеры. Все это красиво выглядит, но не стоит затраченных на контроллер денег.
Если вы дружите с паяльником, схемы очень просты. Делайте и получайте удовольствие от изготовления.
Ну вот, налетел ветер и оставшиеся запасные 5 элементов сорвались в неуправляемый полет….. результат осколки. Ну что поделать, безалаберность должна быть наказана. А с другой стороны…. Куда их?
Решили сделать из осколочков еще одну панельку, вольт на 5. На изготовление ушло 2 часа. Остатки материалов как раз пришлись в пору. Вот что получилось.
Замеры сделаны вечером.
Надо сказать, что при хорошем освещении сила тока короткого замыкания более 1 ампера.
Кусочки спаяны параллельно и последовательно. Цель, обеспечить примерно одинаковую площадь. Ведь сила тока равна самому маленькому элементу. А потому при изготовлении подбирайте элементы по площади освещения.
Настало время рассказать о практическом применении изготовленых мною солнечных батарей.
Весной установил две изготовленые панели на крыше, высота 8 метров под углом 35 градусов, оринтированые на юговосток. Такое орентирование было выбрано не случайно, потому как было замечено, что в данной широте, летом солнышко всходит в 4 утра и к 6-7 часам вполне сносно заряжает аккумуляторы током в 5-6 ампер, тоже касается и вечера. Каждая панель должна обязательно иметь свой диод. Дабы исключить выгорание элементов при отличающийся мощности панелей. И как следствие неоправданое снижение мощности панелей.
Спуск с высоты был выполнен многожильным проводом сечением 6мм2 каждая жила. Таким образом удалось достигнуть минимальных потерь в проводах.
В качестве накопителей энергии использованы старые еле-живые аккумуляторы 150А.ч,75А.ч,55А.ч, 60А.ч. Все аккумуляторы соеденены паралельно и учитывая потерю емкости, сумарно составляют ококло 100А.ч.
Контроллер заряда аккумулятора отсутствует. Хотя думаю установка контроллера необходима.Над схемой контроллера сечас работаю. Так как в течении дня аккумуляторы начинают кипеть. Потому приходится ежедневно сбрасывать излишки энергии, путем включения ненужной нагрузки. В моем случаее включаю освещение бани. 100 Вт. Так же в течении дня работает LCD телевизор примерно 105Вт, вентилятор 40Вт., а к вечеру добавляется энергосберегающая лампочка 20Вт.
Любителям проводить расчеты скажу: ТЕОРИЯ И ПРАКТИКА не одно и тоже. Так как такой “сендвичь” вполне прекрасно работает свыше 12 часов. при этом иногда заряжаем от него телефоны.Полного разряда аккумуляторов еще не достиг ни разу. Что соответственно перечеркивает расчеты.
В качестве преобразователя использован чуть- чуть переделаный для свободного пуска от аккумуляторов компьютерный бесперебойник (инвертор) 600В.А, что примерно соответствует нагрузке в 300Вт.
Так же хочу отметить, что батареи заряжаются и при яркой луне. При этом ток составляет 0,5-1 Ампер, думаю для ночи это совсем неплохо.
Конечно хотелось бы увеличить нагрузку, но для этого требуется мощьный инвертор. Планирую изготовить инвернтор сам по ниже приведенной схеме. Так как покупать инвертор за бешаные деньги НЕРАЗУМНО!
Как сделать солнечную батарею своими руками: инструктаж по самостоятельной сборке
Солнечные батареи — источник получения энергии, которую можно направить на выработку электричества или тепла для малоэтажного дома. Вот только солнечные батареи имеют высокую стоимость и недоступны большинству жителей нашей страны. Согласны?
Другое дело, когда сделана солнечная батарея своими руками — затраты значительно уменьшаются, а работает такая конструкция ничуть не хуже, чем панель промышленного производства. Поэтому, если вы всерьез задумываетесь о приобретении альтернативного источника электроэнергии, попытайтесь сделать его своими руками – это не очень сложно.
В статье речь пойдет об изготовлении солнечных батарей. Мы расскажем, какие материалы, и инструменты для этого потребуются. А немного ниже вы найдете пошаговую инструкцию с иллюстрациями, которые наглядно демонстрируют ход работы.
Коротко об устройстве и работе
Энергию солнца можно преобразовать в тепловую, когда энергоносителем является жидкость-теплоноситель или в электрическую, собираемую в аккумуляторах. Батарея представляет собой генератор, работающий на принципе фотоэлектрического эффекта.
Преобразование энергии солнца в электроэнергию происходит после попадания солнечных лучей на пластины-фотоэлементы, которые являются основной частью батареи.
При этом световые кванты “отпускают” свои электроны с крайних орбит. Эти свободные электроны дают электрический ток, который проходит через контроллер и скапливается в аккумуляторе, а оттуда поступает энергопотребителям.
В роли пластин-фотоэлементов выступают элементы из кремния. Кремниевая пластина с одной стороны покрыта тончайшим слоем фосфора или бора – пассивного химического элемента.
В этом месте под действием солнечных лучей высвобождается большое количество электронов, которые удерживаются фосфорной плёнкой и не разлетаются.
На поверхности пластины имеются металлические “дорожки”, на которых выстраиваются свободные электроны, образуя упорядоченное движение, т.е. электрический ток.
Чем больше таких кремниевых пластин-фотоэлементов, тем больше электрического тока можно получить. Подробнее о принципе работы солнечной батареи читайте далее.
Материалы для создания солнечной пластины
Приступая к сооружению солнечной батареи необходимо запастись следующими материалами:
- силикатные пластины-фотоэлементы;
- листы ДСП, алюминиевые уголки и рейки;
- жёсткий поролон толщиной 1,5-2,5 см;
- прозрачный элемент, выполняющий роль основания для кремниевых пластин;
- шурупы, саморезы;
- силиконовой герметик для наружных работ;
- электрические провода, диоды, клеммы.
Количество требуемых материалов зависит от размера вашей батареи, которая чаще всего ограничивается количеством доступных фотоэлементов. Из инструментов вам понадобиться: шуруповёрт или набор отвёрток, ножовка по металлу и дереву, паяльник. Для проведения испытаний готовой батареи понадобиться тестер-амперметр.
Теперь рассмотрим самые важные материалы более подробно.
Кремниевые пластины или фотоэлементы
Фотоэлементы для батарей бывают трёх видов:
- поликристаллические;
- монокристаллические;
- аморфные.
Поликристаллические пластины характеризуются низким КПД. Размер полезного действия составляет около 10 – 12 %, но зато этот показатель не понижается с течением времени. Продолжительность работы поликристаллов – 10 лет.
Монокристаллические фотоэлементы могут похвастаться более высоким КПД – 13-25% и долгими сроками работы – свыше 25 лет. Однако со временем КПД монокристаллов снижается.
Монокристаллические преобразователи получают путем пиления искусственно выращенных кристаллов, что и объясняет наиболее высокую фотопроводимость и производительность.
Гибкие батареи с аморфным кремнием – самые современные. Фотоэлектрический преобразователь у них напылен или наплавлен на полимерную основу. КПД в районе 5 – 6 %, но пленочные системы крайне удобны в укладке.
Пленочные системы с аморфными фотопреобразователями появились сравнительно недавно. Это предельно простой и максимально дешевый вид, но быстрее соперников теряющий потребительские качества.
Нецелесообразно использовать фотоэлементы разного размера. В данном случае максимальный ток, вырабатываемый батарей, будет ограничен током наиболее маленького по размеру элемента. Значит, более крупные пластины не будут работать на полную мощность.
Чаще всего для самодельных батарей используются моно- и поликристаллические фотоэлементы размером 3х6 дюймов, которые можно заказать в интернет-магазинах типа Е-бай.
Стоимость фотоэлементов достаточно высока, но многие магазины продают так называемые элементы группы В. Изделия, отнесённые к этой группе имеют брак, но пригодны к использованию, а их стоимость ниже, чем у стандартных пластин на 40-60%.
Большинство интернет-магазинов продают фотоэлементы комплектами по 36 или 72 фотоэлектрической преобразовательной пластины. Для соединения отдельных модулей в батарею потребуются шины, для подключения к системе нужны будут клеммы.
Каркас и прозрачный элемент
Каркас для будущей панели можно сделать из деревянных реек или алюминиевых уголков.
Второй вариант более предпочтителен по целому ряду причин:
- Алюминий – лёгкий металл, не дающий серьёзной нагрузки на опорную конструкцию, на которую планируется установка батареи.
- При проведении антикоррозийной обработки алюминий не подвержен воздействию ржавчины.
- Не впитывает влагу из окружающей среды, не гниёт.
При выборе прозрачного элемента необходимо обратить внимание на такие параметры, как показатель преломления солнечного света и способность поглощать ИК-излучение.
От первого показателя напрямую будет зависеть КПД фотоэлементов: чем показатель преломления ниже, тем выше КПД кремниевых пластин.
Минимальный коэффициент светоотражения у плексиглас или более дешёвого его варианта – оргстекла. Чуть ниже показатель преломления света у поликарбоната.
От величины второго показателя зависит, будут ли нагреваться сами кремниевые фотоэлементы или нет. Чем меньше пластины подвергаются нагреванию, тем дольше они прослужат. ИК-излучения лучше всего поглощает специальное термопоглощающее оргстекло и стекло с ИК-поглощением. Немного хуже – обычное стекло.
Если есть возможность, то оптимальным вариантом будет использование в качестве прозрачного элемента антибликового прозрачного стекла.
Проект системы и выбор места
Проект гелиосистемы включает в себя расчёты необходимого размера солнечной пластины. Как было сказано выше, размер батареи, как правило, ограничен дорогостоящими фотоэлементами.
Гелиобатарея должна устанавливаться под определённым углом, который обеспечил бы максимальное попадание на кремниевые пластины солнечных лучей. Наилучший вариант – батареи, которые могут менять угол наклона.
Место установки солнечных пластин может быть самым разнообразным: на земле, на скатной или плоской крыше дома, на крышах подсобных помещений.
Единственное условие – батарея должна быть размещена на солнечной, не затененной высокой кроной деревьев стороне участка или дома. При этом оптимальный угол наклона необходимо вычислить по формуле или с применением специализированного калькулятора.
Угол наклона будет зависеть от месторасположения дома, времени года и климата. Желательно, чтобы у батареи была возможность менять угол наклона вслед за сезонными изменениями высоты солнца, т.к. максимально эффективно они работают при падении солнечных лучей строго перпендикулярно поверхности.
Расчёты показывают, что 1 квадратный метр гелиосистемы даёт возможность получить 120 Вт. Поэтому путём расчетов можно установить, что для обеспечения среднестатистической семьи электроэнергией в количестве 300 кВт в месяц необходима гелиосистема минимум в 20 квадратных метров.
Сразу установить такую гелиосистему будет проблематично. Но даже монтаж 5-ти метровой батареи поможет сэкономить электроэнергию и внести свой скромный вклад в экологию нашей планеты. Советуем также ознакомиться с принципом расчета необходимого количества солнечных батарей.
Солнечная батарея может использоваться в качестве резервного энергоисточника при частом отключении централизованного энергоснабжения. Для автоматического переключения необходимо предусмотреть систему бесперебойного питания.
Подобная система удобна тем, что при использовании традиционного источника электроэнергии одновременно производится зарядка аккумулятора гелиосистемы. Оборудование обслуживающее гелиобатарею размещается внутри дома, поэтому необходимо предусмотреть для него специальное помещение.
Монтаж солнечной батареи по шагам
Выбрав место для размещения солнечной панели и оборудования для обслуживания гелиосистемы, а также имея в наличии все требуемые материалы и инструменты, можно начинать монтаж батареи.
При монтаже необходимо соблюдать технику безопасности, особенно осуществляя установку готовой панели на крышу дома. Рассмотрим пошаговый алгоритм, как сделать солнечную батарею.
Шаг #1 – пайка контактов кремниевых пластин
Монтаж самодельной солнечной батареи часто начинается с пайки проводников фотоэлементов. Безусловно, если у вас есть возможность, то лучше всего купить фотоэлементы сразу с проводниками, т.к. пайка – очень непростая и кропотливая работа, занимающая много времени.
Пайка осуществляется следующим образом:
- Берётся кремниевый фотоэлемент без проводников и металлическая полоса-проводник.
- Проводники нарезаются при помощи картонной заготовки, их длина в 2 раза больше, чем размер кремниевой пластины.
- Проводник аккуратно выкладывается на пластину. На один элемент – два проводника.
- На место, где будет производиться спайка, необходимо нанести кислоту для работы с паяльником.
- Произвести пайку при помощи паяльника, аккуратно присоединив проводник к пластине.
В процессе пайки нельзя давить на силикатный элемент, т.к. он очень хрупкий и может разрушиться! Если вам посчастливилось, и вы приобрели фотоэлементы с готовыми контактами, то вы избавите себя от долгой и сложной работы, переходя сразу к изготовлению каркаса для будущей батареи.
Шаг #2 – изготовление каркаса для солнечной батареи
Каркас – это место, куда будут устанавливаться фотоэлементы. Для изготовления каркаса берутся алюминиевые уголки и рейки, из которых складываются рамки. Рекомендуемый размер уголка – 70-90 мм.
На внутреннюю часть металлических уголков наносится силиконовый герметик. Герметизацию уголков необходимо произвести тщательно, от этого зависит долговечность всей конструкции.
После того, как алюминиевая рамка готова, приступаем к изготовлению заднего корпуса. Задний корпус представляет собой деревянный ящик из ДСП с невысокими бортиками.
Высокие борта будут создавать тень на фотоэлементах, поэтому их высота не должна превышать 2 см. Бортики привинчиваются при помощи саморезов и шуруповёрта.
На дне ящика-корпуса из ДСП делаются вентиляционные отверстия. Расстояние между отверстиями примерно 10 см. В алюминиевую раму устанавливается прозрачный элемент (оргстекло, антибликовое стекло, плексиглас).
Прозрачный элемент прижимается и фиксируется, его крепление осуществляется при помощи метизов: 4 по углам, а также по 2 с длинных и по 1 с короткой стороны рамы. Метизы крепятся шурупами.
Каркас для гелиобатареи готов и можно приступать к самой ответственной части – монтажу фотоэлементов. Перед монтажом необходимо очистить оргстекло от пыли и обезжирить спиртсодержащей жидкостью.
Шаг #3 – монтаж кремниевых пластин-фотоэлементов
Монтаж и пайка кремниевых пластин – самая трудоёмкая часть работы по созданию солнечной панели своими руками. Сначала раскладываем фотоэлементы на оргстекло синими пластинами вниз.
Если вы впервые собирайте батарею, то можно воспользоваться подложкой для нанесения разметки, чтобы расположить пластины ровно на небольшом (3-5 мм) расстоянии друг от друга.
- Производим пайку фотоэлементов по следующей электросхеме: “+” дорожки расположены на лицевой стороне пластины, “-” – на обратной. Перед пайкой аккуратно наносит флюс и припой, чтобы соединить контакты.
- Производим пайку всех фотоэлементов последовательно рядами сверху вниз. Ряды затем должны быть также соединены между собой.
- Приступаем к приклеиванию фотоэлементов. Для этого наносим небольшое количество герметика на центр каждой кремниевой пластины.
- Переворачиваем получившиеся цепочки с фотоэлементами лицевой стороной (там, где синие пластины) вверх и размещаем пластины по разметке, которую нанесли ранее. Осторожно прижимаем каждую пластину, чтобы зафиксировать её на своём месте.
- Контакты крайних фотоэлементов выводим на шину, соответственно “+” и “-“. Для шины рекомендуется использовать более широкий проводник из серебра.
- Гелиобатарею необходимо оснастить блокирующим диодом, который соединяется с контактами и предотвращает разрядку аккумуляторов через конструкцию в ночное время.
- В дне каркаса сверлим отверстия для вывода проводов наружу.
Провода необходимо прикрепить к каркасу, чтобы они не болтались, сделать это можно используя силиконовый герметик.