1 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Левитрон на датчике Холла своими руками

Левитрон своими руками: самодельная схема устройства для левитации в магнитном поле

Идея устройства очень проста, электромагнит поднимает в воздух магнит, а для создания эффекта левитации в магнитном поле, он подключен к высокочастотному источнику, который то поднимает, то опускает объект.

Шаг 1: Схема устройства

Схема на удивление проста и я полагаю, что у вас не составит труда собрать левитрон своими руками. Вот список компонентов:

  • светодиод (любого цвета — это опционально)
  • транзистор Irfz44n (или любой подходящий mosfet)
  • диод HER207 (с таким же успехом должен работать 1n4007)
  • резисторы 1k и 330Om (последний необязателен)
  • датчик Холла A3144 (либо аналогичный)
  • медный обмоточный провод диаметром 0.3 — 0.4 мм и длиной 20 м
  • неодимовые магниты (я использовал 5 * 1 мм)
  • 5 вольтовый зарядник для телефона

Шаг 2: Сборка

Приступим к сборке. Сперва нам нужно сделать рамку для электромагнита примерно таких размеров: диаметр 6 мм, высота мотка примерно 23 мм, и диаметр ушек около 25 мм. Как видите, изготовить её можно из обычного листа, картона и суперклея. теперь закрепим начало мотка на рамке и расслабимся — нам нужно будет сделать около 550 оборотов, неважно в каком набавлении. Я сделал 12 слоёв, что отняло у меня 1.5 часа.

Шаг 3: Спайка

Спаиваем всё по схеме, без каких-либо нюансов. Датчик Холла припаян к проводам, т.к. он будет помещён в катушку. Когда всё спаяете, поместите датчик в катушку, закрепите его, подвесьте катушку и подайте ток. Поднеся магнит, вы почувствуете, что он притягивается или отталкивается, в зависимости от полюса, и пытается зависнуть в воздухе, но неудачно.

Шаг 4: Настройка

После 30 минут, потраченных над разгадкой вопроса, «почему эта штука не работает?», я пришел в отчаяние и прибегнул к крайним мерам — начал читать спецификацию к датчику, которую создают для таких людей как я. В спецификации имелись картинки, на которых было изображено, какая из сторон чувствительная.

Вытащив датчик и согнув его таким образом, чтобы плоская сторона с надписями была параллельна земле, я вернул его на место — самодельное устройство стало работать заметно лучше, но магнит всё ещё не левитировал. Понять в чём проблема удалось достаточно быстро: магнит в форме таблетки — не самый лучший экземпляр для левитации. Было достаточно сместить центр тяжести к нижней части магнита (я сделал это при помощи куска толстой бумаги ). Кстати, не забудьте проверить, какая сторона магнита притягивается к катушке. Теперь всё работало более или менее нормально и осталось закрепить и защитить датчик.

Какие еще нюансы есть в этом проекте? Сначала я хотел использовать адаптер на 12V, но электромагнит быстро грелся, и мне пришлось переключить его на 5V, я не заметил никаких ухудшений в работе, а нагрев был практически устранён. Диод и ограничивающий резистор были практически сразу отключены. Также я снял с катушки синюю бумагу — мотки медной проволоки смотрятся гораздо красивее.

Левитрон на датчике Холла своими руками

Здесь рассказано и показано, как сделать крутой левитрон своими руками!

Эту поделку меня вынудили собрать в универе 🙂

Делал я её в паре с одногруппником, задачей которого было сделать чумовой корпус, а с меня — электронную начинку.

Насколько всё классно получилось — судите сами, пишите комментарии, интересно будет почитать, обсудить.

Не помню, как именно мы пришли именно к идее сделать левитрон, тема поделки была вольная. Конструкция вроде и простая, но глаз притягивает.

Вообще сам левитрон — устройство, которое поддерживает какой-либо предмет в среде, которая никак не соприкасается с какой-либо поверхностью, кроме как через воздух. В вакууме тоже будет работать.

В данном случае электроника заставляет парить магнит, а магнит уже можно приклеить к, например, банке из-под вкусного недорогого напитка 🙂

Если хорошенько поискать в интернете, то можно увидеть много разных вариантов электромагнитного левитрона, например:

Их можно условно разделить на подвесной и отталкивающий. Если в первом случае необходимо просто компенсировать силу тяжести, то во втором ещё и смещение в горизонтальной плоскости, так как согласно теореме Ирншоу «всякая равновесная конфигурация точечных зарядов неустойчива, если на них кроме кулоновских сил притяжения и отталкивания ничто не действует.» — цитата из вики.

Из этого вытекает, что подвесной левитрон проще в изготовлении и настройке, если таковая вообще необходима. Сильно заморачиваться не хотелось, поэтому для универа сделали подвесной левитрон, о котором здесь идёт речь, а отталкивающий уже делал для себя любимого 🙂 О нём в другой статье будет написано. Чуть позднее удалю этот текст и дам тут ссылку на него. Работает великолепно, но минусы свои тоже имеет.

В свою очередь все подвесные левитроны можно так же условно разделить на цифровые и аналоговые по способу удержания предмета на одном расстоянии. А по типу датчиков их можно разделить на оптические, электромагнитные, звуковые и, наверное, всё.

Читать еще:  Каяк для ребёнка своими руками

Итого мы представили подвесной левитрон с цифровым регулированием высоты (ШИМ сигнал тут рулит) с электромагнитными датчиками Холла.

То есть сигнал о расстоянии магнита до левитрона мы получаем аналоговый, а корректируем силу воздействия на магнит уже цифровым способом. Hi-tech, однако.

Сама идея была позаимствована на сайте geektimes, а печатная плата была изготовлена уже персонально под наш набор деталей. Так же в исходном проекте были использованы трёхвыводные датчики SS49, но сроки были весьма сжатые, у нас они стоили мягко говоря неоправданно дорого ($4 за штуку против $6 за 10 штук в китае — ссылка для примера), поэтому мы использовали четырёхвыводные датчики Холла. Пришлось изменить схему и внести конструктивные дополнения в устройство. Так же для большей понтовости был добавлен блок светодиодов, которые плавно загораются при поднесении магнита, то есть когда левитрон начинает работать и плавно выключаются, когда магнит убирают. Всё это будет отражено на схеме.

Собственно, схема левитрона на четырёхвыводных датчиках:

И схема левитрона на трёхвыводных датчиках и более простой подсветкой:

Принцип действия довольно прост. Катушка, являющаяся электромагнитом при подаче питания притягивает магнит — предмет притягивается. Датчик, прикреплённый между магнитом и катушкой фиксирует увеличение магнитного потока, что означает приближение магнита. Электроника это отслеживает и отключает катушку от источника напряжения. Магнит начинает падать под действием силы тяжести. Датчик фиксирует уменьшение магнитного потока, что сразу же обнаруживается электроникой и на электромагнит подаётся напряжение, магнит притягивается — и так происходит очень часто — около 100 тысяч раз в секунду. Возникает динамическое равновесие. Человеческий глаз не успевает заметить этого. Частота генератора задаётся резистором и конденсатором на выводах 5 и 6 микросхемы TL494.

Второй датчик на другой стороне электромагнита нужен для того, чтобы компенсировать магнитное поле, создаваемое самой катушкой. То есть, если бы не было этого второго датчика — при включении электромагнита система бы не могла отличить интенсивность магнитного поля неодимового магнита от магнитного поля, создаваемого самим электромагнитом.

Итак, мы имеем систему двух датчиков, сигнал с которых поступает на операционный усилитель в дифференциальном включении. Это значит, что на выходе операционного усилителя появляется лишь разность напряжений, получаемых с датчиков.

Для примера. На одном из датчиков на выходе напряжение 2,5 В, а на другом — 2,6 В. На выходе будет 0,1 В. Этот дифференциальный сигнал находится на выводе 14 микросхемы LM324 по схеме.

Далее этот сигнал поступает на два следующих операционных усилителя — OP1.1, OP 1.3, выходные сигналы которых через диодный вентиль идут на 4 вывод микросхемы TL494. Диодный вентиль на диодах D1, D2 пропускает только одно из напряжений — то, которое будет больше по номиналу. Вывод №4 ШИМ контроллера рулит следующим образом — чем выше напряжение на этом выводе — тем меньше скважность импульсов. Резистор R9 предназначен для того, чтобы в ситуации, когда на входах диодного вентиля напряжения меньше 0,6 В — вывод №4 был однозначно притянут к земле — при этом ШИМ будет выдавать максимально большую скважность.

Вернёмся к операционным усилителям OP1.1, OP 1.3. Первый служит для выключения ШИМ контроллера, пока магнит находится на достаточно большом расстоянии от датчика, чтобы катушка не работала на максимуме вхолостую.

С помощью OP 1.3 задаём коэффициент усиления дифференциального сигнала — по сути задаёт глубину обратной связи (ОС). Чем сильнее обратная связь — тем сильнее система будет реагировать на приближение магнита. Если глубина ОС не достаточна — магнит можно будет поднести вплотную, а прибор не начнёт снижать мощность, накачиваемую в электромагнит. А если глубина ОС будет слишком большая — то скважность начнёт падать до того, как сила притяжения магнита сможет его удерживать на этом расстоянии.

Переменный резистор P3 ставить не обязательно — он служит для настройки частоты генератора.

OP1.2 является генератором напряжения 2,5 В, необходимый для четырёхвыводных датчиков. Для трёхвыводных датчиков типа SS49 он не нужен.

Забыл упомянуть о элементах C1, R6 и R7. Их фишка в том, что постоянный сигнал здесь урезается в 10 раз за счёт резисторов, а переменный за счёт конденсатора спокойно проходит дальше, тем самым достигается упор работы схемы на резкие изменения расстояния магнита до датчика.

Диод SD1 предназначен для гашения обратных выбросов в момент отключения напряжения на электромагните.

Узел на T2 позволяет плавно включать и выключать светодиодную линейку при появлении импульсов на электромагните.

Перейдём к конструктивному исполнению.

Одним из ключевых моментов в левитроне является электромагнит. Мы делали каркас на основе какого-то строительного болта, на котором были вырезаны круглые бортики из фанеры.

Магнитный поток здесь зависит от нескольких ключевых факторов:

  • наличие сердечника;
  • геометрия катушки;
  • ток в катушке

Если проще, то чем больше катушка и больший ток течёт в ней — тем сильнее она притягивает магнитные материалы.

В качестве обмотки использовали провод ПЭЛ 0,8 мм. Мотали на глаз, пока размеры катушки не показались внушительными. Получилось следующее:

Найти необходимый провод в наших краях может не получиться, однако вполне легко находится в интернет магазинах — провод 0,4 мм для намотки катушки.

Далее был отрезан болт, чтобы он не выступал за пределы бортика, чтобы было удобно крепить датчик.

Читать еще:  Часы «молния-скелетон» своими руками

А пока моталась катушка была подготовлена и вытравлена плата. Делалась по технологии ЛУТ, рисунок платы был сделан в программе Sprint LayOut. Скачать плату левитрона можно по ссылке.

Травилась плата в остатках аммония персульфата, пустая банка которого была успешно применена далее в этом проекте 🙂

Хочу отметить, что размещение деталей, а так же разводка дорожек подразумевают очень аккуратную пайку, так как легко наделать соединений там, где их быть не должно. Если таковых навыков нету — вполне дозволительно это сделать компонентами больших размеров на макетной плате, типо такой, а соединения выполнять с помощью проводов с обратной стороны.

По итогу плата получилась такая:

Плата очень эргономично вписалась в габариты катушки и была прикреплена прямо на неё с помощью могучего термоклея, тем самым превращаясь в единый моноблок — подключил питание, настроил и система работает.

Но это всё было до того, как был готов электромагнит. Плата была сделана немного раньше и чтобы хоть как-то протестировать работоспособность устройства была временно подключена менее габаритная катушка. Первый результат порадовал.

Датчики, как уже писалось выше, применены от систем слежения положения BLDC двигателей, четырёхвыводные. Так как не удалось найти на них документацию пришлось опытным путём выяснять, какие выводы за что отвечают. Форм-фактор получился такой:

Тем временем подоспел крупногабаритный электромагнит. Эта штука вселяла большую надежду 🙂

Первые испытания с большим электромагнитом показали довольно большое рабочее расстояние. Тут есть один нюанс — датчик, который расположен на стороне неодимового магнита должен быть немного дальше от катушки для уверенного срабатывания электроники.

Последнее фото больше напоминает некий космический спутник. Кстати, именно так и можно было бы оформить этот левитрон. И у тех, кто намерен повторить конструкцию — всё впереди 🙂

Неодимовые магниты были заказаны в Минске, разных форм и размеров. Опять же, из-за спешки. А так, у китайцев тоже можно легко найти: раз, два, три.

В качестве левитирующего предмета было решено использовать банку прохладительного напитка. Лепим на двухсторонний скотч магнит к банке, проверяем.

Работает прекрасно, в целом, устройство можно считать готовым. Осталось внешнее оформление. Из брусков и палок была сделана опорная балка, корпус нашего моноблока был выполнен из той самой пустой пластиковой банки из-под аммония персульфата. Из моноблока выходит всего два провода на питание, как и задумывалось.

К этому моменту уже была напаяна навесным монтажом схема плавного включения линейки светодиодов, сама линейка успешно примонтирована на вездесущий термоклей.

В качестве блока питания выступает позаимствованный у какого-то принтера блок, переделанный с 42 В на 12 В.

Внешний вид блока питания тоже покажу 🙂

Далее из фанеры была сделана подставка, в котором помещался блок питания и разъём для подключения 220 В. Наверху была наклеена матерчатая ткань для красоты, вся конструкция окрашена в жёлто-чёрный цвет. Банку поменяли, так как в ходе экспериментов она немного помялась.

Из этого всего помимо эффекта левитации получился ещё очень даже замечательный ночник.

Видео добавлю чуть позднее, а пока в довершение всему хочу сказать, что мою конструкцию легко повторил 13-летний учащийся моего радиокружка.

Пока ещё внешний вид до законченного варианта не доведён, но электронная начинка работает как положено. Фото его конструкции:

Наша группа Вконтакте, где можно задать вопрос, на который всегда будет дан ответ!

Левитрон на датчике Холла своими руками

Левитрон позволяет осуществлять магнитную подвеску объектов с небольшим весом путем управления магнитным полем, создаваемым катушкой L1. Обратная связь происходит с помощью датчика Холла, выпаянного со старого 3,5″ дисковода (от дискет). Под воздействием внешнего магнитного поля на клеммах H+ и H- возникает разность потенциалов в зависимости от направления поля и его положения.

Схема электрическая левитрона с датчиком Холла

Датчики Холла такого типа довольно низкого качества, но их вполне достаточно для этого применения. Некоторые используют дорогие ратиометрические датчики, но они дороги и довольно труднодоступны. Датчик, который использован тут, является линейным устройством, но его легко спутать с цифровыми, что также часто стоят на дисководах. Чтобы избежать ошибки, проверьте его с помощью обычного мультиметра или осциллографа.

Катушка левитрона представляет собой спиральную проволоку диаметром 0,4 мм на сердечнике — винт с поперечным сечением около 1 см кв. и длиной около 5 см. Под ним установлен датчик. Хорошей идеей является защита его пластиком, который не был бы поврежден неодимовым магнитом, если его случайно ударить об сердечник катушки. Объект, подвешенный под катушкой, должен быть снабжен неодимовым магнитом. Например цилиндрический магнит с поперечным сечением 15 мм и длиной 20 мм.

Для правильной работы устройства полярность катушки и магнита должны быть выбраны соответствующим образом. Это легко сделать с помощью простого компаса. Магнит должен быть направлен к Земле полюсом «S». Приведенная в действие катушка также должна смотреть на Землю с южным полюсом. Таким образом, катушка будет тянуть магнит, когда он находится в пределах своего магнитного поля.

Схема также содержит элементы, защищающие катушку и полевой транзистор от сгорания, когда объект прилипает к сердечнику или выпадает из поля. В этом случае схема управления катушкой закрыта, и ток там не течет. Итого:

  1. катушка точно и симметрично намотана,
  2. датчик расположен точно в центре сердечника,
  3. почти весь вес шара находится намного ниже магнита,
  4. катушка ориентирована точно вертикально.
Читать еще:  Светодиодный светильник из перегоревших лед ламп

Графики сигналов в контрольных точках

  • Uh+: напряжение на положительном выходе галлотрона,
  • Ua: напряжение на выходе повторителя A,
  • Ub: напряжение на выходе инвертирующего усилителя B,
  • Uc: напряжение на выходе триггера Шмидта C,
  • Ud: напряжение, управляемое полевым транзистором.

Что касается потребления тока, измерения цифровым мультиметром показали значение ниже 100 мА (рост при увеличении веса). Чтобы увеличить грузоподъемность, катушки также должны быть увеличены, как и поперечное сечение сердечника и / или его магнитная проницаемость. Можно попытаться использовать ферритовое, но такие сердечники имеют значение частот выше 100 кГц.

Транзистор имеет постоянный ток 7 А и сопротивление канала 30 мОм. В результате он вообще не нагревается. Однако вы можете поднять напряжение, управляющее затвором транзистора, чтобы уменьшить это сопротивление, что, в свою очередь, уменьшит потери тепла в транзисторе.

На самом деле, расстояние от левитирующего объекта зависит от силы электромагнита. Это означает, что чем больше произведение тока катушки и количества витков катушек, тем больше напряженность магнитного поля, создаваемого катушкой. Но это еще не все. Кроме того, на расстояние также влияет проницаемость и площадь поперечного сечения сердечника, чувствительность и динамический диапазон датчика Холла, размер неодимового магнит (интенсивность магнитного поля).

Левитрон с управляемым подвесом своими руками

Данная самоделка представляет собой Левитрон с управляемым подвесом. Конструкция и схема достаточно просты, так что собрать её будет под силам даже не очень опытному радиолюбителю и любителю самоделок. В статье описана пошаговая инструкция сборки левитрона, следуя её, проблем с работоспособностью возникнуть не должно!

Схема левитрона

Что нужно для изготовления левитрона

  1. Транзистор IRF740A [Купить недорого]
  2. Мультиплексор IN74LS157N
  3. Датчик Холла SS443A [Купить недорого ]
  4. Диод 1N4007 [Купить недорого]
  5. Светодиод 12V [Купить недорого]
  6. Резисторы [Купить недорого]
  7. Переключатель (Не включатель!!)
  8. Монтажная плата [Купить недорого]
  9. Обмоточный провод ∅ 0.4 мм
  10. Неодимовые магниты разных размеров [Купить недорого]
  11. Блок питания 5V 3A [Купить недорого]
  12. Фанера и тонкий пластик

Изготовление Левитрона

Первым делом необходимо собрать корпус куда будет монтироваться вся схема, в том числе и катушка. Корпус можно изготовить по схеме ниже либо придумать свой вариант.

Первым делом из фанеры вырезаем все детали нижнего основания и при помощи клея ПВА собираем его.

Затем выпиливаем элементы стоек и так же с помощью клея склеиваем их.

Далее устанавливаем стойки на основание используя клей, как показано на фото ниже.

Далее из тонкого пластика нужно вырезать заглушку для основания корпуса и при помощи супер клея приклеить её.

После того как корпус собран, можно покрасить его в любой цвет, так он станет однотонным и привлекательным на вид, но это не обязательно конечно.

Далее переходим непосредственно к сборке схемы.

Перед сборкой схемы необходимо установить монтажную плату в корпус используя прокладку. Прокладка нужна для того, что бы обеспечить расстояние между корпусом и платой, что бы ножки деталей полностью заходили в отверстия и не возникало проблем при монтаже.

Далее просверливаем два отверстия в верхней части корпуса и в боковой, в них будут продеваться монтажные провода.

Затем вырезаем деталь где делаем отверстия для светодиода и переключателя. Эта деталь будет случить креплением для катушки.

При помощи супер клея, устанавливаем эту деталь на стойку.

Далее необходимо намотать катушку. Для её расчёта нужно использовать программу Coil32, только с помощью этой программы можно добиться максимальных показателей.

Теперь необходимо подобрать стержень, его диаметр должен составлять 10 мм.

Далее отрезаем кусок бумаги от листа А4, проклеиваем его и накручиваем на стержень для для того, что бы получить прочное основание с соответствующим внутренним диаметром.

Затем вырезаем пластиковые стенки диаметром 45 мм.

Далее надеваем стенки на стержень так, что бы расстояние между ними составляло 30 мм.

С помощью супер клея промазываем внешние края стенок и основания для из фиксации.

Аккуратно продеваем провод.

И далее наматываем 1750 витков.

Обрезаем провод с запасом, делаем надрез на стенке, укладываем туда конец провода и термоклеем фиксируем него, для того что бы избежать распускания.

Затем с помощью лезвия убираем все неровности.

Наша катушка готова. Теперь при помощи супер клея устанавливаем её на корпус, как на фото ниже.

Далее припаиваем все детали и провода схемы на монтажную плату. Обратите внимание что переключатель и светодиод устанавливаются не на плату а на корпус.

Далее укладываем продеваем все провода в заранее подготовленные отверстия.

Затем устанавливаем на корпус переключатель и светодиод и сразу же их припаиваем к отведенным для них проводам.

Затем припаиваем провода катушки и датчики холла. Длина проводов датчиков холла должна быть достаточной что бы достать до конца катушки.

Затем сгибаем датчики холла областью сенсора наружу.

Теперь при помощь изоленты крепим датчики как показано на рисунке ниже. Такой способ крепления в будущем, позволит без проблем менять расстояние между сенсорами. Дополнительно необходимо зафиксировать датчики с помощью канцелярских резинок.

Затем продеваем датчики в отверстие катушки и центруем их. Для этих целей и надевалась дополнительно канцелярская резинка.

При помощи пластиковых хомутов фиксируем все провода.

Теперь наш левитрон готов к эксплуатации!

Испытание Левитрона

Подключаем блок питания.

Меняя расстояние между датчиками, мы так же меняем длину хода подвеса.

Всё что остаётся сделать, это поместить магнит в зону датчика и наслаждаться чудесами левитации! ))

Видео самоделки — Левитрон с управляемым подвесом

Ссылка на основную публикацию
Статьи c упоминанием слов:

Adblock
detector