2 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Светодиод реагирующий на свет

Светодиод реагирующий на свет

Такую схемку со светодиодом, реагирующим на свет, можно собрать буквально за 10 минут и нужно иметь минимум комплектующих радиодеталей, и конечно навыки работы с паяльником))

Для схемы понадобятся:

— один LTR-4206E фототранзистор
— одна литиевая CR2032 батарейка (3 V)
— 2N3904 транзистор
— резистор сопротивлением в 1кОм
— паяльник

Итак, все компоненты в сборе, приступим к монтажу:

Сначала возьмем Транзистор и резистор и припаяем их как показано на рисунке:

Далее припаяем к этой конструкции фототранзистор:

Далее припаяем светодиод:

А потом уже и источник питания для светодиода:

В итоге у нас получилось следующее:

Принцип работы: при свете в фотодиоде протекает ток, который подается на базу транзистора — цепь размыкается. Но тут есть один нюанс — нужно продумать размещение элементов так, чтобы свет от светодиода не попадал на фотодиод, а иначе будет наблюдаться не ровный, мигающий свет.

Фотодиод можно заменить солнечной батареей (панелью), а в качестве источника — батарейку от сотового. я всё это проделал, и посмотрите что у меня получилось:

3 варианта реализации простой схемы с мигающим светодиодом

Схема с мигающим светодиодом похожа на электронную версию программы «Hello World». Она такая же простая как и эта программа, которую пишет любой начинающий программист.

Это простая электронная схема, которая дает визуальную подсказку, работает ли она. Это была одна из первых схем, которую я когда-то давно построил.

Цель её состоит в том, чтобы светодиод мигал.

Три разных способа создания такой схемы

Есть несколько способов сделать схему с мигающим светодиодом. Вы можете сделать один вариант с помощью реле. А второй вариант — используя транзисторы. Или вы можете сделать 3 вариант, используя компоненты, такие как инвертор, 555 таймер или микроконтроллер.

Я собираюсь показать вам три способа построения схемы с мигающим светодиодом, используя:

Вариант 1: Схема на основе реле

Самый простой способ заставить диод мигать (или, по крайней мере, самый простой для понимания) заключается в следующем:

В приведенной выше схеме вы видите батарею, реле (в красном квадрате) и лампочку (вы можете взять и светодиод). Чтобы понять схему, вам нужно знать, как работает реле .

Когда на катушку реле подается питание, переключатель отключит питание от электромагнита и вместо этого подключит питание к лампочке, чтобы она загорелась.

Но когда на реле больше не подается питание, оно переключится назад и отключит питание от лампочки и снова выдаст питание на электромагнит.

Затем цикл начинается заново.

Проблема с вышеописанной схемой заключается в том, что она будет переключаться так быстро, что вы не увидите, что лампочка мигает.

Для решения этой проблемы вы можете ввести временную задержку, используя резистор и конденсатор (см. рисунок ниже).

Когда вы подаете питание на вышеуказанную цепь, аккумулятор начинает заряжать конденсатор через резистор R2.

Через некоторое время катушка реле переводит реле в другое положение.

Это заставит светодиод включиться.

Поскольку конденсатор теперь заряжен, он будет удерживать реле в этом положении. Но конденсатор обладает достаточной энергией только для того, чтобы электромагнит в реле немного работал до того, как он разрядится.

Когда на конденсаторе нет энергии, реле возвращается в исходное состояние и снова выключает светодиод.

Затем цикл повторяется.

Для этой схемы с указанными выше значениями компонентов я рекомендую реле DS2Y-S-DC5V или аналогичное.

Вариант 2. Схема с 2 мигающими светодиодами на основе транзисторов

Схема мигания светодиода с использованием транзисторов называется нестабильным мультивибратором (см. рисунок ниже).

Читать еще:  Заставляем кристалл перегоревшего трёхваттного светодиода снова светиться

Чтобы понять эту схему, вам нужно знать, как напряжения и токи ведут себя вокруг резисторов, конденсаторов и диодов .

Выжимка по этой схеме:

Два конденсатора С1 и С2 будут попеременно заряжаться и разряжаться и, таким образом, включать и выключать транзисторы Q1 и Q2. Когда транзистор включен, он пропускает ток через себя, и, как итог, соответствующий светодиод L1 или L2 загорается.

Вариант 3. Схема на основе логического инвертора

Это, вероятно, самая легкая схема с мигающим светодиодом, когда речь идет о количестве компонентов: вам нужно всего три компонента!

Инвертор — это логический компонент, который выдает противоположный сигнал входному сигналу. Если он получает высокое напряжение, он выдает низкое напряжение. И наоборот.

Высокое напряжение — это напряжение, близкое к напряжению питания. Низкое напряжение — это напряжение, близкое к нулю.

На принципиальной схеме видно, что выход инвертора (U1) подключен обратно к входу с помощью резистора R1. Это означает, что если на входе присутствует высокое напряжение, выходной сигнал будет низким. Но так как выход подключен обратно к входу, вход будет низким. Теперь, когда входной сигнал низкий, выходной сигнал будет высоким. Это означает, что вход снова будет высоким, и так далее…

То есть он будет продолжать прыгать между высоким и низким напряжением.

Чтобы замедлить прыжок вперед и назад, я использовал конденсатор на входе инвертора. Резистор R1 контролирует, какой ток возвращается на зарядку конденсатора на входе. Следовательно, номинальное значение R1 и конденсатора C1 будет определять скорость мигания.

Digitrode

цифровая электроника вычислительная техника встраиваемые системы

Как использовать светодиоды в качестве датчика света

Светодиод – это устройство, которое излучает свет. В качестве же датчика света обычно используют фотодиод или фототранзистор. Но, оказывается, и светодиод можно использовать для определения наличия светового потока. В данном материале будет рассказано, как это сделать.

Сегодня кремниевые фотодиоды широко доступны и недороги. Так зачем же использовать светодиоды в качестве датчиков света? Несмотря на эти положительные качества фотодиодов, у светодиодов также есть свои преимущества.

Во-первых, светодиоды могут обнаружить узкую полосу длин волн, поэтому их можно назвать спектрально селективными фотодиодами. Обычный кремниевый фотодиод имеет очень широкий спектральный отклик и требует дорогостоящего фильтра для обнаружения определенной длины волны. Во-вторых, чувствительность большинства светодиодов является очень стабильной в течение долгого времени. В-третьих, светодиоды могут как излучать, так и обнаруживать свет, поэтому в конце оптической линии передачи данных нужен лишь один светодиод, а не два (приемник и передатчик). И, в-четвертых, светодиоды являются еще более недорогими и широко доступными, чем фотодиоды. Но все-таки у светодиодов имеются свои недостатки. Они не столь чувствительны к свету, как большинство кремниевых фотодиодов. Также светодиоды чувствительны к температуре. Это может создать проблему для датчиков, применяемых на открытом воздухе. Но, несмотря на это, светодиоды вполне сгодятся в качестве датчиков света.

Итак, вы можете заменить стандартный кремниевый фотодиод светодиодом в большинстве схем. Только убедитесь, что соблюдаете полярность. Кроме того, помните, что светодиод не так чувствителен как большинство стандартных фотодиодов, и он будет работать на значительно более узкой полосе длин волн света. Для достижения наилучших результатов используйте светодиоды, инкапсулированные в прозрачную эпоксидную смолу. При этом обязательно проведите с ними несколько экспериментов. Это поможет вам понять, насколько угол обнаружения светодиода, используемого в качестве датчика света, совпадает с углом излучения при использовании его в качестве источника света.

Используйте стандартные соединители для подключения светодиодов к оптоволокну или осуществите контакт, как показано на рисунке ниже, вставив оптоволокно в проделанное в корпусе светодиода отверстие.

Для красного или инфракрасного светодиода проверьте ток, подключив его выводы к мультиметру. Направьте этот светодиод в сторону солнца или яркого света лампы накаливания, и измерительный прибор покажет ток.

Вы можете также запитать один светодиод от другого. Для этого соедините анод с анодом и катод с катодом двух сверхъярких красных светодиодов, один из которых поместите в плотную изолирующую трубку. На другой же направьте световой поток фонарика или другого светоизлучающего устройства. При этом вы увидите, что второй светодиод в трубке тоже начнет немного светиться.

Читать еще:  Светодиодный прожектор с регулировкой яркости и питанием от сети автомобиля

Светодиоды имеют значительно меньшую светочувствительную поверхность, чем большинство кремниевых фотодиодов, поэтому для них, скорее всего, потребуется усиление. Для этой цели вполне подойдут недорогие операционные усилители. На рисунке ниже показана схема, которую можно применять для преобразования фототока светодиода в пропорциональное напряжение.

Здесь операционный усилитель с однополярным питанием LT1006 компании Linear Technology обеспечивает выходное напряжение, которое почти идеально линейно по отношению к интенсивности падающего света. Усиление равно сопротивлению резистора обратной связи (R1). Так, если R1 равно 1000000 Ом, то коэффициент усиления контура составляет 1000000. Конденсатор С1 предотвращает колебания.

Таким образом, светодиоды вполне можно использовать в качестве датчиков света, и в некоторых приложениях благодаря своей селективности и чувствительности они будут более полезны, чем фотодиоды.

Как сделать мигающий светодиод

Лишены возможности купить готовый мигающий светодиод, где внутрь колбы встроены необходимые элементы для осуществления нужной функции (осталось подключить батарейку) – попробуйте собрать авторскую схему. Понадобится немногое: рассчитать резистор светодиода, задающий совместно с конденсатором период колебаний в цепи, ограничить ток, выбрать тип ключа. По некоторым причинам экономика страны работает на добывающую отрасль, электроника закопана глубоко в землю. С элементной базой напряг.

Принцип действия светодиода

Подключая светодиод, узнайте минимум теории – портал ВашТехник готов помочь. Район p-n перехода за счет существования дырочной и электронной проводимости образует зону несвойственных толще основного кристалла энергетических уровней. Рекомбинируя, носители заряда высвобождают энергию, если величина равна кванту света, спай двух материалов начинает лучиться. Оттенок определен некоторыми величинами, соотношение выглядит так:

E = h c / λ; h = 6,6 х 10-34 – постоянная Планка, с = 3 х 108 – скорость света, греческой буквой лямбда обозначается длина волны (м).

Из утверждения следует: может быть создан диод, где разница энергетических уровней присутствует. Так изготавливаются светодиоды. В зависимости от разницы уровней, цвет синий, красный, зелёный. Редкие светодиоды обладают одинаковым КПД. Слабыми считают синие, которые исторически появились последними. КПД светодиодов сравнительно мал (для полупроводниковой техники), редко достигает 45%. Удельное превращение электрической энергии в полезную световую просто потрясающее. Каждый Вт энергии дает фотонов в 6-7 раз больше, нежели спираль накала в эквивалентных условиях потребления. Объясняет, почему светодиоды сегодня занимают прочную позицию в осветительной технике.

Создание мигалки на основе полупроводниковых элементов несравненно проще. Хватит сравнительно малых напряжений, схема начнет работать. Остальное сводится к правильному подбору ключевых и пассивных элементов для создания пилообразного или импульсного напряжения нужной конфигурации:

  1. Амплитуда.
  2. Скважность.
  3. Частота следования.

Очевидно, подключение светодиода к сети 230 вольт выглядит негодной идеей. Присутствуют подобные схемы, но заставить мигать сложно, элементная база отсутствует. Светодиоды работают от гораздо более низких питающих напряжений. Самыми доступными считаются:

  • Напряжение +5 В присутствует в устройствах заряда телефонных аккумуляторов, iPad и других гаджетов. Правда, выходной ток невелик, и не нужно. Вдобавок, +5 В нетрудно найти на шине блока питания персонального компьютера. С ограничением тока проблемы устраним. Провод красного цвета, землю ищите на черном.
  • Напряжение +7…+9 Встречается на зарядных устройствах ручных радиостанций, в обиходе называемых рациями. Великое множество фирм, у каждой стандарты. Здесь бессильные дать конкретные рекомендации. Рации чаще выходят из строя в силу особенностей использования, лишние зарядные устройства обычно можно достать сравнительно дешево.
  • Схема подключения светодиода будет лучше работать от +12 вольт. Стандартное напряжение микроэлектроники, встретим во многих местах. Компьютерный блок содержит вольтаж -12 вольт. Изоляция жилы синяя, сам провод оставлен для совместимости со старыми приводами. В нашем случае может понадобиться, не окажись под рукой элементной базы питания +12 вольт. Комплементарные транзисторы найти, включить вместо исходных сложно. Номиналы пассивных элементов остаются. Светодиод включается обратной стороной.
  • Номинал -3,3 вольт на первый взгляд кажется невостребованным. Посчастливится достать на aliexpress RGB светодиоды SMD0603 4 рубля штука. Однако! Падение напряжения в прямом направлении не превышает 3 вольта (обратное включение не понадобится, но в случае неправильной полярности максимальный вольтаж составляет 5).

Устройство светодиода понятно, условия горения известны, приступим к реализации задумки. Заставим элемент мигать.

Тестирование мигающих RGB светодиодов

Компьютерный блок питания выступает идеальным вариантом тестирования светодиодов SMD0603. Нужно просто поставить резистивный делитель. Согласно схеме технической документации оценивают сопротивления p-n переходов в прямом направлении, заручившись помощью тестера. Прямое измерение здесь невозможно. Соберем схему, показанную ниже:

Читать еще:  Светодиодный светильник на потолке балкона

Схема оценки сопротивления p-n переходов

  1. Микросхема дана вместе с номерами ножек согласно техническим характеристикам.
  2. Питание подается на катод, полярность напряжения отрицательная. 3,3 вольта хватит открыть p-n переходы.
  3. Переменный резистор нужен небольшого номинала. На рисунке установлен с максимальным пределом 680 Ом. В таком положении должен находиться изначально.
  4. Сопротивление открытого p-n перехода невелико, нужен значительный запас, чтобы диоды не погорели (помним, что максимальное прямое напряжение составляет 3 В). Принимается во внимание факт: при низком вольтаже сопротивление каждого светодиода составит 700 Ом. При параллельном включении суммарное сопротивление вычисляется формулой, показанной на рисунке. Подставляя в качестве трех входных параметров 700, получаем 233 Ом. Сопротивление светодиодов, когда только-только начнут открываться (по крайней мере, так полагаем).

Формула расчета суммарного сопротивления

Провод +3,3 В блока питания компьютера оранжевой изоляции, схемную землю берем с черного. Обратите внимание: опасно включать модуль без нагрузки. Идеально подключить DVD-привод или другое устройство. Допускается при наличии умения обращения с приборами под током снять боковую крышку, извлечь оттуда нужные контакты, не снимать блок питания. Подключение светодиодов иллюстрирует схема. Измерили сопротивление на параллельном подключении светодиодов и остановились?

Поясняем: в рабочем состоянии светодиодов понадобится включить несколько, проделаем аналогичную настройку. Напряжение питания на микросхеме составит 2,5 вольта. Обратите внимание, светодиоды мигающие, показания неточные. Максимальное не превыше 2,5 вольта. Индикация успешной работы схемы выражается миганием светодиодов. Чтобы часть мерцала, уберем питание с ненужных. Допускается собрать отладочную схему с тремя переменными резисторами – по одному в ветвь каждого цвета.

Теперь знаем, как сделать мигающую светодиодную подсветку своими руками. Можно ли варьировать время срабатывания. Полагаем, внутри должны использоваться емкости. Возможно, собственные паразитные элементы p-n переходов светодиодов. Подключая переменный конденсатор параллельно схеме на вход, можно попробовать что-либо изменить. Номинал очень мал, измеряется пФ. Маленькая микросхема лишена больших емкостей. Допускаем, резистор, подключенный параллельно микросхеме (см. пунктир на рисунке), усаженный на землю, будет образовывать точный делитель. Стабильность возрастет.

Номиналы нужно брать весомые, не забывать: значительно ограничим ток, идущий через светодиоды. Фактически потребуется продумать вопрос согласно ситуации.

Обычный светодиод мигает

Схема мигающего светодиода

Схема, изображенная рисунком, использует для работы лавинный пробой транзистора. КТ315Б, используемый в качестве ключа, имеет максимальное обратное напряжения между коллектором и базой 20 вольт. Опасного в таком включении мало. У модификации КТ315Ж параметр составляет 15 вольт, гораздо ближе выбранному напряжению питания +12 вольт. Транзистор использовать не стоит.

Лавинный пробой нештатный режим p-n перехода. За счет превышения обратного напряжения между коллектором и базой происходит ионизация атомов ударами разогнавшихся носителей заряда. Образуется масса свободных заряженных частиц, увлекаемых полем. Очевидцы утверждают: для пробоя транзистора КТ315 требуется обратное напряжение, приложенное между коллектором и эмиттером, амплитудой 8-9 В.

Пара слов о работе схемы. В первоначальный момент времени начинает заряжаться конденсатор. Подключен на +12 вольт, остальная часть схемы оборвана – закрыт транзисторный ключ. Постепенно разница потенциалов повышается, достигает напряжения лавинного пробоя транзистора. Напряжение конденсатора резко падает, параллельно подключены два открытых p-n перехода:

  1. Транзисторный находится в режиме пробоя.
  2. Светодиод открыт за счет прямого включения.

В сумме напряжение составит порядка 1 вольта, конденсатор начинает разряжаться через открытые p-n переходы, только напряжение падает ниже 7-8 вольт, везение кончается. Транзисторный ключ закрывается, процесс повторяется заново. Схеме присущ гистерезис. Транзистор открывается при более высоком напряжении, нежели закрывается. Обусловлено инерционностью процессов. Видим, как работает светодиод.

Номиналы резистора, ёмкости определяют период колебаний. Конденсатор можно взять значительно меньше, включив меж коллектором транзистора и светодиодом небольшое сопротивление. Например, 50 Ом. Постоянная разряда резко увеличится, проверить светодиод визуально будет проще (возрастет время горения). Понятно, ток не должен быть слишком большим, максимальные значения берутся из справочников. Не рекомендуется вести подключение светодиодных светильников из-за низкой термостабильности системы и наличия нештатного режима транзистора. Надеемся, обзор получился интересным, картинки доходчивыми, объяснения ясными.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector