10 просмотров
Рейтинг статьи
1 звезда2 звезды3 звезды4 звезды5 звезд
Загрузка...

Частотометр-цифровая шкала, с самодельным семисегментным индикатором

Частотомер — 3 рабочие схемы для сборки своими руками

  1. На PIC16F628
  2. Частотомер — цифровая шкала. Схема и инструкция по монтажу
  3. На микросхеме

Сегодня рассмотрим пошагово создание частотомера своими руками. Первым делом поговорим о характеристиках и особенностях прибора на pic16f628a, рассмотрим схему и особенности монтажа. Вторая схема частотомера — цифровой шкалы. Уделим внимание подбору необходимых комплектующих и остановимся детальнее на сборке. Третья схема представляет простой частотомер на микросхемах. Но обо всём по порядку.

Частотомер на PIC16F628 своими руками

Первым делом рассмотрим простую и дешевую схему частотомера. Он может измерять сигналы от 16 до 100Гц с максимальной амплитудой 15В. Чувствительность высокая, разрешение — 0,01 Гц. Входной сигнал может быть синусоидальной, прямоугольной или треугольной волной.

Частотомер может использоваться во многих приложениях. Например, для наблюдения за точностью генератора, для измерения частоты сети или нахождения оборотов двигателя, соединенного с датчиком.

Схема частотомера и необходимые детали для монтажа

Файл печатной платы представлен в формате PDF, архив можно скачать ниже. Вы можете сделать плату используя метод ЛУТ.

CCP (Capture(Захват)/Compare(Сравнение)/PWM(ШИМ)) модуль PIC-микроконтроллера считывает входной сигнал. Используется только функция захвата.

Необходимые детали для сборки частотомера:

  • МК PIC 8-бит — PIC16F628A (PIC16F628-04/P).
  • 4 биполярных транзистора — BC547.
  • 2 керамических конденсатора — 22 пФ.
  • 12 резисторов — 1х4.7 кОм, 4х1 кОм, 7х330 Ом.
  • Кварц — 4 МГц.
  • 4 семисегментных индикатора (общий катод).

Радиоэлементы для изоляции:

  • Биполярный транзистор — BC547.
  • Выпрямительный диод — 1N4148
  • Оптопара — 4N25M.
  • 4 резистора — 2х1 кОм, 1х10 кОм, 1х470 Ом.

Необходимые комплектующие для сборки питания:

  • Линейный регулятор — LM7805.
  • 2 электролитических конденсатора — 100 мкФ, 16В.
  • 2 полиэфирных конденсатора — 220 нФ.

Дисплеи — красные, 7-сегментные светодиодные, 14,2 мм с общим катодом.

Рекомендации по подключению частотомера

Перед измерением частоты входного сигнала, он должен быть преобразован в прямоугольный. Для этой цели используется схема оптической развязки с оптроном 4N25. Таким образом, входной сигнал надежно изолирован от микроконтроллера и превращается в меандр. Амплитуда сигнала не должна превышать 15В. Если это произойдет, резистор 1кОм может сгореть. Если вы хотите измерить частоту сети, вы должны использовать 220В/9В трансформатор.

  • Схема DDS-генератора сигналов

Напряжение питания должно быть в пределах 8–12В. При большем напряжении схема может быть повреждена. Нужно быть осторожными с полярностью при подключении питания.

Принципиальная схема счетчика (частотомера) приведена в файле проекта. Есть 4 дисплея, которые работают по методу мультиплексирования (динамическая индикация). Для измерения вывод RB3 подключен к выходу оптического изолятора. 5 вывод второго дисплея подключен к питанию через резистор 1 кОм, так что точка после второго дисплея горит. Это соединение не показано на схеме.

C-код, написанный в PIC C компиляторе, доступен для скачивания. HEX также прилагается.

Мы использовали два дополнительных разъема. Первый (18 контактный, 2 ряда) для микроконтроллера PIC16F628, и второй (40 контактный, 2 ряда).

Видео о сборке частотомера на PIC16F628A:

Частотомер — цифровая шкала. Схема и инструкция по монтажу

Рассматриваемое устройство выполняет функции:

  • частотомера с выводом измеренного значения частоты в герцах (до 8 разрядов);
  • цифровой шкалы с АПЧ генератора плавного диапазона (ГПД) для радиолюбительского трансивера;
  • электронных часов.

Основу устройства составляет программируемый контроллер PIC16F84 фирмы Microchip. Быстродействие и широкие функциональные возможности этого контроллера позволяют подавать сигнал частотой до 50 МГц прямо на его счетный вход, то есть можно обойтись без предварительного делителя, обычно применяемого в устройствах подобного типа.

Основные характеристики цифрового частотомера

  1. Диапазон измеряемых частот — 0–50 МГц.
  2. Диапазон программируемых значений ПЧ — 0–16 МГц.
  3. Минимальный уровень входного сигнала — 200 мВ.
  4. Время измерения частоты — 1 с.
  5. Погрешность измерения — ±1 Гц.
  6. Напряжение питания — 5±0,5 В.
  7. Ток потребления устройства — не более 30 мА.

Наличие электрически перепрограммируемой памяти данных внутри PIC16F84 позволило без специального оборудования перепрограммировать значение промежуточной частоты (ПЧ). Это дает возможность оперативно встраивать цифровую шкалу в трансивер с любым (0–16 МГц) значением промежуточной частоты.

  • Смотрите схему измерителя емкости конденсаторов

В качестве устройства индикации применен модуль ЖКИ от телефонных аппаратов типа Panaphone. Ввод информации в модуль осуществляется по двум линиям в последовательном коде. Полезной оказалась встроенная функция электронных часов. Малый ток потребления обуславливает малые помехи радиоприемной аппаратуре, в которую может встраиваться данное устройство.

Цифровой частотомер — схема и её описание, необходимые комплектующие

Список необходимых радиоэлементов:

  • Микросхема (DD1) — КР1554ЛА3.
  • МК PIC 8-бит (DD2) — PIC16F84A.
  • 2 биполярных транзистора (VT1, VT2) — КТ368А и КТ315Б.
  • 6 диодов (VD1–VD6) — КД521Б.
  • 3 конденсатора (С1, С2, С6) — 0.1 мкФ, 0.033 мкФ, 68 пФ.
  • Электролитический конденсатор (С3, С4, С7) — 6.8 мкФ и 2х100 мкФ.
  • Подстроечный конденсатор (С5) — 68 пФ.
  • 14 резисторов — R1 (330 Ом); R2 (47 кОм); R3, R4, R6, R8–R11 (7х15 кОм); R5, R12–R14 (4х5.1 кОм); R7 (430 Ом).
  • Кварцевый резонатор (ZQ1) — 4 МГц.
  • LCD-дисплей (HG1) — КО-4В, от телефонного аппарата.
  • 3 тактовых кнопки S1, S2, WR_IF.
  • Кнопка на размыкание НК.
  • Батарея питания — 1.5 В.
  • Блок питания — 5В.

На транзисторе VT1 и микросхеме DD1 выполнен формирователь входного сигнала. Микросхема DD2 выполняет функции контроллера частотомера, цифровой шкалы с АПЧ, управления модулем ЖКИ, а также позволяет оперативно изменять режим работы устройства.

Если на выводе 1 микросхемы DD2 присутствует уровень логической «1», то прибор выполняет функцию частотомера, если уровень логического «0» — цифровой шкалы. В режиме цифровой шкалы на индикатор выводится значение частоты входного сигнала равное Рвх+Р„ч при наличии уровня логической «1» на выводе 2 микросхемы DD2; или Fвх-Fпч — при уровне логического «0» на выводе 2 DD2.

  • Смотрите, как сделать щуп для осциллографа

Для записи необходимого значения Fпч надо в режиме частотомера подать на вход устройства сигнал с частотой Fпч (сигнал опорного генератора или телеграфного гетеродина, настроенных на центральную частоту полосы пропускания фильтра ПЧ), а на вывод 8 микросхемы DD2 на время 1,5–2 с подать уровень логического «0». Значение Fпч сохраняется в памяти при отключении питания и может неоднократно (не менее 106 раз) перепрограммироваться приведенным выше способом.

Система АПЧ ГПД работает следующим образом. После измерения частоты входного сигнала производится анализ числа равного сотням герц и, если оно четное, на вывод 8 микросхемы DD2 выдается уровень логического «0». Если нечетное, на вывод 8 микросхемы DD2 выдается уровень логической «1». Эти логические сигналы, предварительно проинтегрировав, можно использовать для управления емкостью варикапа в контуре ГПД. В результате осуществляется стабилизация частоты возле четных значений сотен герц с точностью ±10 Гц.

В режиме цифровой шкалы можно осуществить гашение десятков и единиц герц, если установить уровень логического «0» на выводе 9 микросхемы DD2.

Для перевода устройства в режим электронных часов необходимо нажать кнопку «НК». Для корректировки часов и минут служат кнопки «S1» и «S2».

Печатная плата частотомера:

Скачать прошивку и исходный код можно ниже:

Смотрите также видео, как собрать частотомер своими руками:

Простой частотомер на микросхеме своими руками — характеристики и схема

Параметры предлагаемого частотомера приведены в следующей таблице:

Читать еще:  Самодельный хомут из консервной банки

Частотомер — цифровая шкала с динамической индикацией на микроконтроллере PIC16F628A (PIC16F84A)

Простая цифровая шкала-частотомер на микроконтроллере PIC16F84 (PIC16F628) с индикацией на семисегментном светодиодном индикаторе типа АЛС318 или аналогичном. Позволяет мерить до 30 МГц с разрешением 10 Гц. Есть возможность прибавлять или отнимать значение ПЧ.

  • Максимальная измеряемая частота .………………30 мгц,
  • Максимальное разрешение измеряемой частоты…10 Гц,
  • Чувствительность по входу…………………………250 мВ
  • Напряжение питания ……………………………… 8…12 В,
  • Потребляемый ток………………………………… 35 мА.

Принципиальная схема частотомера — цифровой шкалы приведена ниже. Она состоит из:

  • формирователя входного сигнала, выполненного на транзисторе VT1. Сигнал измеряемой частоты, поданный на вход, ограничивается, усиливается и подается на вход PIC процессора для измерения;
  • центрального процессора DD2, выполняющего функции измерения, расчета, преобразования, управления динамической индикацией и динамического опроса входных сигналов. Кнопки SB1 и SB2 используются для выбора режима цифровой шкалы. Тактовая частота процессора определяется кварцевым резонатором ZQ1 и может изменяться в небольших пределах конденсаторами C1 и C2.
  • светодиодного индикатора HG1 для отображения частоты.
  • микросхемы DD1 – дешифратора позиции отображаемой цифры.

Работа устройства в режиме частотомера

При включении питания, устройство автоматически переходит в тот режим, в котором оно работало ранее (до последнего выключения питания). Если это был режим частотомера, то в крайнем левом разряде индикатора высветится признак режима частотомера «F.». В младшем разряде индикатора высветится «0», а остальные разряды будут погашены. Частотомер автоматически перейдет в режим измерения частоты с временем измерения 1 сек. (по умолчанию) и после этого, будет находиться в режиме ожидания.

При подаче на вход частотомера сигнала с измеряемой частотой, признак режима частотомера «F.» гасится (при этом 8-й разряд включается в работу по отображению значения измеряемой частоты), и индикатор отобразит значение измеряемой частоты в килогерцах (относительно десятичной точки). При этом будет отображаться только полезная информация, а разряды, которые ее не содержат, будут погашены.

Если на момент включения питания, на входе частотомера присутствует измеряемый сигнал, то, после включения питания, признак работы частотомера «F.», высветится в течение 1-й секунды, а затем погаснет.

Для того чтобы перейти на время измерения 0,1 сек. или 10 сек., необходимо нажать либо кнопку № 1, либо одновременно нажать кнопку № 1 и кнопку № 2 соответственно (см. раскладку клавиатуры для режима частотомера), затем дождаться изменения положения десятичной точки, после его отпустить кнопку (кнопки).

Если после этого необходимо вернуться к времени измерения 1 сек., то необходимо нажать кнопку № 2 и дождаться изменения положения десятичной точки, после чего отпустить кнопку.

Для любого времени измерения десятичная точка отмечает килогерцы.

Если перед выключением питания происходила работа в режиме частотомера, то при следующем включении питания установится этот же режим, а время измерения установится по умолчанию (1 сек.).

Раскладка клавиатуры режима частотомера

Работа устройства в режиме цифровой шкалы

Если перед выключением питания происходила работа в режиме цифровой шкалы, то при следующем включении питания будет установлен именно этот режим, а внутри режима цифровой шкалы будет установлен именно тот подрежим («минус ПЧ» или «плюс ПЧ»), в котором происходила работа до последнего выключения питания.

Признаки подрежимов цифровой шкалы («L.» или «H.» соответственно) будут постоянно высвечиваться в левом (старшем) разряде индикатора.

При отсутствии сигнала на входе цифровой шкалы (частотомер и цифровая шкала имеют общий вход), индикатор будет показывать значение записанной в энергонезависимую память PIC контроллера промежуточной частоты, а при его наличии — результат вычитания или сложения частоты сигнала, присутствующего на входе цифровой шкалы, и значения промежуточной частоты, записанной в энергонезависимую память PIC контроллера.

Так же, как и в режиме частотомера, в этих подрежимах режима цифровой шкалы, разряды индикатора, не содержащие полезной информации, будут погашены.

В режиме цифровой шкалы, время измерения (подсчета импульсов) составляет 0,1 сек. (погрешность измерения 10 Гц.) и изменить его нельзя.

При использовании времени измерения 0,1 сек. (это относится также и к работе в режиме частотомера с временем измерения 0,1 сек.), для облегчения визуального восприятия показаний прибора, негативный эффект мерцаний показаний индикатора ослабляется.

Режим цифровой шкалы имеет 4 подрежима (см. раскладку клавиатуры режима цифровой шкалы). При нажатии на кнопку № 1 происходит переход в подрежим «минус ПЧ». При этом, в левом разряде индикатора, высветится признак подрежима «L.». При нажатии на кнопку № 2 происходит переход в подрежим «плюс ПЧ». При этом, в левом разряде индикатора, высветится признак подрежима «H.».

В процессе «прошивки» PIC контроллера, в его энергонезависимую память записывается значение промежуточной частоты = 5,5 мГц., но впоследствии, пользователь может самостоятельно записать в нее любое значение частоты (в пределах рабочего диапазона частот) и использовать ее в качестве промежуточной. Для выполнения этой процедуры необходимо подать на вход цифровой шкалы внешний сигнал (например, от генератора стандартных сигналов) с частотой, которая далее будет использоваться в качестве промежуточной. Проконтролировать значение этой частоты можно, перейдя в режим частотомера (переходы между режимами будут описаны ниже).

Убедившись в том, что на вход устройства поступает сигнал с требуемой частотой, необходимо перейти в режим цифровой шкалы, затем одновременно нажать кнопку № 1 и кнопку № 2 и держать их в нажатом состоянии до тех пор, пока все разряды индикатора не окажутся погашенными. После этого кнопки нужно отпустить. В индикаторе высветится значение будущей промежуточной частоты, заложенное в оперативную память при помощи одномоментной записи. По этой причине, значение будущей промежуточной частоты в разрядах индикатора фиксируется (не меняется), и можно не спеша сравнить его с тем значением частоты, которое требуется записать в энергонезависимую память в качестве промежуточной.

Примечание: так как процедура записи значения промежуточной частоты, в энергонезависимую память PIC контроллера, будет использоваться достаточно редко, автор не стал перегружать программу командами процедуры гашения незначащих нулей в разрядах оперативной памяти, и поэтому, при индикации содержимого оперативной памяти будут высвечиваться все разряды индикатора (незначащие нули не гасятся).

Если значение содержимого оперативной памяти (будущая ПЧ) Вас устраивает, то можно записать его в энергонезависимую память PIC контроллера. Для этого еще раз нажимаются обе кнопки. Их необходимо держать в нажатом состоянии до появления признака окончания записи в энергонезависимую память («F» в младшем разряде индикатора), а затем отпустить.

В зависимости от того, какая кнопка была отпущена последней, в старшем разряде индикатора высветится признак подрежима цифровой шкалы «L.» или «H.», незначащие разряды будут погашены, а в остальных разрядах будет индицироваться результат вычитания или сложения установленной промежуточной частоты и измеряемой частоты. Если установившийся подрежим не тот, который нужен, ничто не мешает переключиться на другой подрежим.

Остается только подключить вход цифровой шкалы к выходу гетеродина или синтезатора частот.

Если значение будущей промежуточной частоты Вас не устраивает (неточное значение), то необходимо завершить процедуру записи этого значения промежуточной частоты в энергонезависимую память (иначе нельзя будет переключиться в режим частотомера).

После появления признаков подрежимов «L.» или «H.», необходимо перейти в режим частотомера, скорректировать в этом режиме значение будущей промежуточной частоты, вернуться в режим цифровой шкалы и повторить процедуру записи значения промежуточной частоты в энергонезависимую память PIC контроллера (см. выше). Количество такого рода манипуляций не ограничено.

Раскладка клавиатуры режима цифровой шкалы

Схема цифровой шкалы — частотомера

А. Денисов г. Тамбов (RA3RBE)

При работе на любительской радиостанции перед радиолюбителем часто встает необходимость точно знать частоту, на которую настроен его трансивер или приемник для того, чтобы не уйти за пределы диапазона или для точной настройки на заранее оговоренную частоту. Механические шкалы не дают такой возможности поэтому приходится конструировать электронные шкалы. В настоящее время разработано большое количество электронных шкал и частотомеров, при разработке которых используются микросхемы разной степени интеграции. Зачастую это сложные устройства, насчитывающие несколько десятков микросхем. Эти конструкции довольно сложны для повторения из-за того, что в сложной схеме гораздо выше возможность допустить ошибку на всех этапах – от публикации до монтажа.

Читать еще:  Самодельный светильник для гаража или мастерской

Принципиальную схему частотомера можно предельно упростить, если построить ее на базе процессора PIC16F84 фирмы Microchip (http://www.microchip.com/). Этот процессор обладает высоким быстродействием, широкими функциональными возможностями. Встроенное энергонезависимое запоминающее устройство позволяет записывать и оперативно изменять величину промежуточной частоты цифровой шкалы.

При работе над своим частотомером я поставил перед собой задачу создания максимально простой конструкции, несложной в повторении, учитывающей ошибки и недочеты допущенные при конструировании аналогичных устройств.

Вашему вниманию предлагается частотомер – цифровая шкала, в котором вся работа по измерению, преобразованию и динамической индикации перенесена на программное обеспечение, а аппаратная часть содержит всего две микросхемы.

Устройство выполняет следующие функции:

  • Семиразрядного частотомера с индикацией частоты в десятках герц в младшем разряде индикатора
  • Цифровой шкалы радиолюбительского трансивера (приемника). В этом режиме к измеренному значению прибавляется или вычитается значение промежуточной частоты, записанное в энергонезависимую память PIC процессора.

1. Принципиальная схема.

2. Печатная плата. Конденсатор С1 — 47.0 мкф , С2 — 0.1 мкф

Максимальная измеряемая частота .………………30 мгц
Максимальное разрешение измеряемой частоты…10 Гц,
Чувствительность по входу………………………….250 мВ
Напряжение питания ………………………………. 8…12 В,
Потребляемый ток………………………………….. 35 мА,

Принципиальная схема частотомера — цифровой шкалы приведена на рис 1. Она состоит из:

  • формирователя входного сигнала, выполненного на транзисторе VT1. Сигнал измеряемой частоты, поданный на вход J5, ограничивается, усиливается и подается на вход PIC процессора для измерения;
  • центрального процессора U1, выполняющего функции измерения, расчета, преобразования, управления динамической индикацией и динамического опроса входных сигналов. Выводы J3 и J4 используются для выбора режима цифровой шкалы. Тактовая частота процессора определяется кварцевым резонатором Y1 и может изменяться в небольших пределах конденсаторами C3 и C4.
  • светодиодного индикатора U2 для отображения частоты.
  • микросхемы U3 – дешифратора позиции отображаемой цифры.
  • Интегрального стабилизатора питающего напряжения U4. Напряжение питания частотомера величиной 8..12 вольт подается на выводы J1(+) и J2(-)

Функции устройства реализованы следующим образом:

  • При отключенных выводах J3 и J4 работает как частотомер (режим измерения);
  • При подаче лог. “0” на вывод J3 складывает измеренные значения с заранее записанной в энергонезависимую память константой (цифровая шкала);
  • При подаче лог. “0” на вывод J4 вычитает по модулю эту константу из измеренного значения(цифровая шкала);
  • При подаче лог. “0” одновременно на выводы J3 и J4 через 1 сек. шкала перейдет в режим записи константы, отобразит на индикаторе букву «F» и измеренную частоту.
  • Повторная подача лог. «0» на J3 и J4 приведет к записи замеренного значения в энергонезависимую память процессора и возврату в режим измерения. После этого новая константа будет использоваться в качестве величины промежуточной частоты.
  • Данный режим сделан для того, чтобы пользователи могли сами устанавливать величину ПЧ в своей шкале без перепрограммирования PIC процессора. По умолчанию в тексте программы записана величина ПЧ равная 5.5 мгц.

Прим. логическому “0” соответствует потенциал 0 вольт (“земля”).

Конструкция выполнена на односторонней печатной плате размерами 57 х 67 мм. Эскиз печатной платы приведен на рис.2 , однако предельная простота конструкции позволяет легко повторить ее даже на макетнице.

Правильно собранный частотомер — цифровая шкала с правильно запрограммированным PIC процессором почти не требует настройки. Минимальная настройка заключается в подаче на вход частотомера эталонной частоты и подстройки конденсатора C3 до получения правильных показаний на индикаторе. При этом возможно потребуется корректировка емкости конденсатора C4.

Теперь немного информации для тех, кто не имеет большого опыта работы с PIC процессорами.

Для транслирования исходного текста программы в машинный код процессора использовался широко распространенный, бесплатный ассемблер MPASM, для программирования – программатор PIX, так же бесплатный и доступный на многих серверах. Сушествует много других ассемблеров и программаторов, однако эти наиболее доступны для пользователей с небольшим опытом. Их можно скачать с моей. Схемы аппаратной части программатора находятся в файле программатора PIX.

Архивы MPASM и PIX распаковываем в разных директориях MPASM и PIX соответственно, файл DIGSCAL.ASM с исходным текстом программы частотомера переписываем в директорию ассемблера MPASM.

1. Трансляция исходного текста

Набираем команду MPASM DIGISCAL.ASM. После выполнения программы на экране дисплея должно быть следующее:

MPASM 01.40 Released © 1993-96 Microchip Technology Ink./Byte Craft Limi

Checking c:MPASMDIGISCAL.ASM for symbols…
Assembling…
DIGISCAL.ASM 639
Building files…

Errors : 0
Warnings : 0 reported 0 suppressed
Messages : 0 reported 0 suppressed
Lines assembled : 638

Press any key to continue.

Отсутствие сообщения об ошибках и предупреждений говорит о том, что программа оттранслирована правильно. После трансляции в директории MPASM появятся несколько файлов с именем DIGISCAL и разными расширениями. Файл DIGISCAL.HEX и есть тот файл, который будет записан в PIC процессор.

2. Программирование PIC процессора

2.1. Переходим в директорию PIX, запускаем программу PIX.EXE, подключаем к разъему COM2 аппаратную часть программатора с вставленным PIC процессором (рис.3).

2.2. Даем команду F7 (Erase) – стираем ранее записанную информацию, т.к. новые микросхемы заполнены нулями, которые нужно «стереть». Микросхема без информации заполнена 3FFF, а ее энергонезависимая память FF. После стирания в этом можно убедиться, посмотрев содержимое памяти командой F4 (Read).

2.3. Даем команду F3 (File) и выбираем файл DIGISCAL.HEX из директории MPASM.

2.4. Последняя команда – F9 (Blow) – запись микросхемы.

После завершения процесса программирования появляется надпись “All loaded Areas Blown OK 1195 mSec”, последняя цифра может отличаться в зависимости от быстродействия компьютера.

2.5. Отключаем аппаратную часть программатора от порта COM2 и выгружаем программатор командой ALT-X.

Микросхема запрограммирована и готова к работе в частотомере.

Правильно собранный частотомер — цифровая шкала с запрограммированным PIC процессором почти не требует настройки. Минимальная настройка заключается в подаче на вход частотомера эталонной частоты и подстройки конденсатора C3 до получения правильных показаний на индикаторе. При этом возможно потребуется корректировка величины C4.

Программу для самостоятельного программирования PIC процессора можно взять здесь.

При разработке схемы и программного обеспечения использованы данные конструкции Peter Halicky OM3CPH.

Обо всех замеченных недостатках прошу сообщать по адресу

Частотометр-цифровая шкала, с самодельным семисегментным индикатором

При конструировании любительского КВ трансивера на диапазон 160м, была задача, как то ориентироваться при настройке. Достаточно точная, удобная и симпатичная механическая шкала показалась на тот момент неоправданно сложной в изготовлении и было принято волевое решение изготовить шкалу цифровую. Таковая, кроме отсутствия довольно точной механики, занимала мало места, хорошо вписывалась в переднюю панель предполагаемого устройства и была практически не критична к месту установки в корпусе прибора, что существенно упрощало компоновку устройства.

— Профессор, конечно, лопух, но аппаратура при нём-мм, при нём-мм! Как слышно?

«Операция «Ы» и другие приключения Шурика»

В настоящее время разработано большое количество электронных шкал и частотомеров, при разработке которых используются микросхемы разной степени интеграции. Зачастую это сложные устройства, насчитывающие несколько десятков микросхем. Эти конструкции довольно сложны для повторения из-за того, что в сложной схеме гораздо выше возможность допустить ошибку на всех этапах – от разработки до монтажа. Внимание было сосредоточено на приборах выполненных на базе современных микроконтроллеров (их довольно просто программировать).

Были изучены возможные варианты, доступные в сети интернет, из них, подобрался вариант, подходящий по доступности радиоэлементов и сложности. Им оказалась, довольно известная конструкция частотометра-цифровой шкалы А.Денисова. Взглянем на нее.

Сердцем схемы, является центральный процессор U1, выполняющий функции измерения, расчета, преобразования, управления динамической индикацией и динамического опроса входных сигналов. Выводы J3 и J4 используются для выбора режима цифровой шкалы. Тактовая частота процессора определяется кварцевым резонатором Y1 и может изменяться в небольших пределах конденсаторами C3 и C4.

Читать еще:  Самодельный светящийся стол

Микросхема U3 – дешифратор позиции отображаемой цифры.

Формирователь входного сигнала, выполнен на транзисторе VT1. Сигнал измеряемой частоты, поданный на вход J5, ограничивается, усиливается и подается на вход PIC процессора для измерения.

Максимальная измеряемая частота .………………30 мгц
Максимальное разрешение измеряемой частоты…10 Гц,
Чувствительность по входу………………………….250 мВ
Напряжение питания ………………………………. 8…12 В,
Потребляемый ток………………………………….. 35 мА,

Функции устройства реализованы следующим образом:

При отключенных выводах J3 и J4 работает как частотомер (режим измерения);

При подаче лог. “0” на вывод J3 складывает измеренные значения с заранее записанной в энергонезависимую память константой (цифровая шкала);

При подаче лог. “0” на вывод J4 вычитает по модулю эту константу из измеренного значения(цифровая шкала);

При подаче лог. “0” одновременно на выводы J3 и J4 через 1 сек. шкала перейдет в режим записи константы, отобразит на индикаторе букву «F» и измеренную частоту.

Повторная подача лог. «0» на J3 и J4 приведет к записи замеренного значения в энергонезависимую память процессора и возврату в режим измерения. После этого новая константа будет использоваться в качестве величины промежуточной частоты.

Данный режим сделан для того, чтобы пользователи могли сами устанавливать величину ПЧ в своей шкале без перепрограммирования PIC процессора. По умолчанию в тексте программы записана величина ПЧ равная 5.5 мгц.

Прим. логическому “0” соответствует потенциал 0 вольт (“земля”).

Что было использовано.

Инструменты.
Паяльник с принадлежностями. Инструмент для радиомонтажа. Инструменты для рисования печатных плат. Нечто для сверления, в том числе тонких (0,8мм) отверстий. Мультиметр. Необходим доступ к компьютеру. Пользовался термоклеем.

Материалы.
Кроме радиоэлементов, понадобился кусочек фольгированного стеклотекстолита, монтажный провод, химикаты для изготовления печатных плат.

В схеме был применен неплохой, но устаревший индикатор АЛС-318. Индикатор был специально создан для применения с микросхемами, имеющими маленький ток выхода. Цифры там были крохотные и ему хватало. Чтобы цифры можно было разглядеть, над каждой была пластиковая линза. Видно было нормально, но угол поля зрения, конечно невелик. Специфический такой индикатор. АЛС-318 это блок из 9 таких циферок. Уже давно не выпускается.

Пришлось искать ему замену. К несчастью, в местном горе-магазине радиотоваров, семисегментные индикаторы были не то чтобы редкостью, но вот хотя бы 4 одинаковых… Справившись с некоторым унынием, решил изготовить такие индикаторы самостоятельно – светодиодов предлагалось, целая витрина. Среди них оказались вполне подходящие для составления циферок, с прямоугольным вытянутым корпусом. Но и тут вышла накладка, зеленых оказалось недостаточно для восьми цифр, пришлось, махнув рукой на эстетику, добирать красными, но и их не хватило. Заручившись клятвами продавцов, что «уж никак не позже понедельника» привезут самосвал таких же, поехал к себе, заниматься нанотехнологиями.

В любимом Автокаде, были вычерчены несколько вариантов «начертания» циферок составленных из светодиодов. Выбран самый симпатичный.

Печатная плату самого частотометра, решено было оставить авторскую, а плату с индикаторами, учитывая установку на переднюю стенку прибора, вычертил в том же Автокаде.

Ах да, микросхема двоичного дешифратора имеет ток выходов, всего 8 мА, пришлось возиться с транзисторыми ключами.
Восемь транзисторов КТ361, по штуке на каждый разряд, чтобы не переделывать авторскую плату частотометра, установлены на плате индикаторов, со стороны дорожек. К ним выведены контактные площадки.

Плата частотометра крепилась к индикаторам на стоечках выполненных из винтов М3, этаким бутербродом. На чертеже выше, это синий контур.

Был собран и настроен программатор для PIC контроллеров. Остановился на варианте, где для программирования подается «высокое» напряжение (13В). Подключается к параллельному порту компьютера.

Практика показала его надежность и хорошую работу.
Итак, наш контроллер PIC16F84 был благополучно «прошит». Собраны платы, самого блока управления и не полностью – индикатора. Все соединения сделаны на живую нитку, попробовать.

Ожил, как миленький. Правда, вначале вообще ничего ни понял, индикаторы считываются, мягко говоря, не слишком хорошо, но понять все же можно. Да и «помигивание» их постоянное, несколько смутило.

Сигнал подается со звуковой карты компьютера. Работает программа программного генератора. На индикаторе 178 Гц. С «помигиванием», увы, ничего не сделать – динамическая индикация.

Плохая читаемость, происходит, отчасти из-за видимости не светящихся сегментов цифры, отчасти из за засвечивания светящимся сегментом соседних. Первое, нейтрализуется классически – достаточно плотным светофильтром. Например, лист принтерной бумаги положенный поверх светодиодов индикатора, практически устраняет эту неприятность.

При очередном наезде в город, было приобретено недостающее количество светодиодов и установлены, на плату индикатора.
От засвечивания-же, решено было избавиться более радикально.

В начале, светодиоды индикатора покрасил черным битумным лаком. Не очень понравилось, да и просвечивал лак. Оттер его растворителем, по возможности и залил пространство между светодиодами, черным термоклеем. О, вот это, другое дело! Никаких тебе просвечиваний. Подтёки застывшего клея, обрезал острым ножом под линеечку.

Торчащие светодиоды опилены крупной шкуркой наклеенной на брусок. Это, кроме внешнего вида, дало еще и матовую поверхность торцов «сегментов», что привело к значительно более равномерному свечению. Словом, стало, совсем хорошо.

Была выполнена настройка частотометра, заключающаяся в подаче на вход прибора, более или менее точной частоты и подстройке конденсатора С3, до получения правильных показаний на индикаторе. Одним подстроечным конденсатором дело не обошлось, пришлось еще менять емкости С4, С5.

Плата управления закреплена на большой «индикаторной», по месту уточнены длины соединяющих проводов. «Тактовые» кнопки управления режимами, приклеены на заднюю стенку платы индикатора термоклеем.

Частотометр установлен на переднюю стенку собираемого трансивера. Изнутри. Снаружи, цифры прикрыты широкой пластинкой из тонкого рифленого оргстекла (кусочек лотка принтера), чуть подкрашенного разбавленным асфальтным лаком. Под светофильтром находится слой толстой латунной фольги с прорезанным прямоугольным окошком напротив цифр. К слову, при работе в составе трансивера, последние две цифры отличающегося цвета оказались весьма удобными. Важными при настройке, были первые пять цифр, а две последних – сотни и десятки герц, нет. И при разных их цветах, хватало короткого взгляда на индикатор, чтобы понять его показания.

На стабилизатор 7805 установлен алюминиевый радиатор.

Трансивер некоторое время работал в режиме «радио», с не настроенной передающей частью (у меня пока нет позывного), потом его цифровая шкала была модернизирована.

Заключалась модернизация, прежде всего в замене процессора с PIC16F84 на PIC16F628A (1, см.рис.) и введением нового несложного входного формирователя на двухзатворном полевом транзисторе, плюс несколько несложных перекоммутаций (2, см.рис.) на основной плате и понятно, «прошивка» нового процессора .

После всех эволюций, частотометр, кроме прочего, еще может измерять период и длительность импульсов. Да, самое, на мой вкус, приятное – практически исчезло несколько раздражающее моргание индикатора.

Необходимость в радио отпала, и было решено сделать для частотометра отдельный корпус, тем более, он у нас теперь такой могучий.

Корпус выполнен из фанеры 8мм, передняя панель – отпечатана на цветном принтере, на плотной фотобумаге, поверх нее наложена прозрачная пластинка тонкого оргстекла. Светофильтр на индикаторах – два слоя пластика, вырезанного из темной одноразовой баклажечки.
Входной формирователь закреплен позади входного гнезда и заключен в коробочку, спаянную из листовой меди, для экранирования. С основной платой, он соединен тонким коаксильным кабелем. Кроме основного блока питания со стабилизатором +5 В, внутри корпуса находится еще один небольшой трансформатор с выпрямителем и стабилизатором +12 В, на КРЕН. Предназначен он, для питания различных приставок к частотометру – измерение резонансных частот контуров, измерение индуктивности, емкости, температуры, напряжения.

Файлы с более подробным описанием частотометра, его доработки и программатора находится в архиве.

Ссылка на основную публикацию
Статьи c упоминанием слов:
Adblock
detector